Loading…
Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review
Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Alth...
Saved in:
Published in: | Brain sciences 2021-04, Vol.11 (5), p.549 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 549 |
container_title | Brain sciences |
container_volume | 11 |
creator | Pradhan, Jonu Bellingham, Mark C |
description | Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease. |
doi_str_mv | 10.3390/brainsci11050549 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740</doaj_id><sourcerecordid>2532319760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</originalsourceid><addsrcrecordid>eNpdks1v1DAQxSMEaqvSe08oEhcuAX_GMQek1aqllRaQgJ4t25nsepXYi50U8t_X2y1VW19sed77ad5oiuIco4-USvTJRO18sg5jxBFn8lVxQpCoK8oIf_3kfVycpbRF-TQIUY6OiuPsJ9lBT4rwHaYYdps5udCHtbO6L7-B3Wjv0pDKG99C7Gfn1-UyxPG-fDXvIFYX_6wbtXG9G-fS-XIxzGHck5wtV3qEmJW_bA8xJJc-l4vyJ9w6-Pu2eNPpPsHZw31a3Fxe_F5eVasfX6-Xi1VlmURjVWMhMRK5WwzApNCdaJmoG6praRjWNeqIIZQSkKjVRnDRcBAImk6KDoShp8X1gdsGvVW76AYdZxW0U_cfIa6V3ufpQbUSZMPaVhrDGQCVorEEk66mHeOCocz6cmDtJjNAa8GPOd0z6POKdxu1DreqwSwHoBnw4QEQw58J0qgGlyz0vfYQpqQIJ6jhVAicpe9fSLdhij6PKqsooViKet8ROqhsHm-K0D02g5HaL4d6uRzZ8u5piEfD_1Wgd_K_t_k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532319760</pqid></control><display><type>article</type><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Pradhan, Jonu ; Bellingham, Mark C</creator><creatorcontrib>Pradhan, Jonu ; Bellingham, Mark C</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci11050549</identifier><identifier>PMID: 33925493</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amyotrophic lateral sclerosis ; Animal diseases ; Animal models ; Disease ; electrophysiology ; Excitability ; Excitotoxicity ; Family medical history ; glutamate ; Glutamatergic transmission ; Hypotheses ; Interneurons ; Medical prognosis ; motor cortex ; Motor neurons ; Neurons ; Paralysis ; Pathology ; Patients ; Potassium ; Review ; synaptic transmission ; upper motor neuron</subject><ispartof>Brain sciences, 2021-04, Vol.11 (5), p.549</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</citedby><cites>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</cites><orcidid>0000-0001-9189-4430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532319760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532319760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33925493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Jonu</creatorcontrib><creatorcontrib>Bellingham, Mark C</creatorcontrib><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Animal diseases</subject><subject>Animal models</subject><subject>Disease</subject><subject>electrophysiology</subject><subject>Excitability</subject><subject>Excitotoxicity</subject><subject>Family medical history</subject><subject>glutamate</subject><subject>Glutamatergic transmission</subject><subject>Hypotheses</subject><subject>Interneurons</subject><subject>Medical prognosis</subject><subject>motor cortex</subject><subject>Motor neurons</subject><subject>Neurons</subject><subject>Paralysis</subject><subject>Pathology</subject><subject>Patients</subject><subject>Potassium</subject><subject>Review</subject><subject>synaptic transmission</subject><subject>upper motor neuron</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1v1DAQxSMEaqvSe08oEhcuAX_GMQek1aqllRaQgJ4t25nsepXYi50U8t_X2y1VW19sed77ad5oiuIco4-USvTJRO18sg5jxBFn8lVxQpCoK8oIf_3kfVycpbRF-TQIUY6OiuPsJ9lBT4rwHaYYdps5udCHtbO6L7-B3Wjv0pDKG99C7Gfn1-UyxPG-fDXvIFYX_6wbtXG9G-fS-XIxzGHck5wtV3qEmJW_bA8xJJc-l4vyJ9w6-Pu2eNPpPsHZw31a3Fxe_F5eVasfX6-Xi1VlmURjVWMhMRK5WwzApNCdaJmoG6praRjWNeqIIZQSkKjVRnDRcBAImk6KDoShp8X1gdsGvVW76AYdZxW0U_cfIa6V3ufpQbUSZMPaVhrDGQCVorEEk66mHeOCocz6cmDtJjNAa8GPOd0z6POKdxu1DreqwSwHoBnw4QEQw58J0qgGlyz0vfYQpqQIJ6jhVAicpe9fSLdhij6PKqsooViKet8ROqhsHm-K0D02g5HaL4d6uRzZ8u5piEfD_1Wgd_K_t_k</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Pradhan, Jonu</creator><creator>Bellingham, Mark C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid></search><sort><creationdate>20210427</creationdate><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><author>Pradhan, Jonu ; Bellingham, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Animal diseases</topic><topic>Animal models</topic><topic>Disease</topic><topic>electrophysiology</topic><topic>Excitability</topic><topic>Excitotoxicity</topic><topic>Family medical history</topic><topic>glutamate</topic><topic>Glutamatergic transmission</topic><topic>Hypotheses</topic><topic>Interneurons</topic><topic>Medical prognosis</topic><topic>motor cortex</topic><topic>Motor neurons</topic><topic>Neurons</topic><topic>Paralysis</topic><topic>Pathology</topic><topic>Patients</topic><topic>Potassium</topic><topic>Review</topic><topic>synaptic transmission</topic><topic>upper motor neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Jonu</creatorcontrib><creatorcontrib>Bellingham, Mark C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Jonu</au><au>Bellingham, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>549</spage><pages>549-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33925493</pmid><doi>10.3390/brainsci11050549</doi><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3425 |
ispartof | Brain sciences, 2021-04, Vol.11 (5), p.549 |
issn | 2076-3425 2076-3425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access) |
subjects | Amyotrophic lateral sclerosis Animal diseases Animal models Disease electrophysiology Excitability Excitotoxicity Family medical history glutamate Glutamatergic transmission Hypotheses Interneurons Medical prognosis motor cortex Motor neurons Neurons Paralysis Pathology Patients Potassium Review synaptic transmission upper motor neuron |
title | Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurophysiological%20Mechanisms%20Underlying%20Cortical%20Hyper-Excitability%20in%20Amyotrophic%20Lateral%20Sclerosis:%20A%20Review&rft.jtitle=Brain%20sciences&rft.au=Pradhan,%20Jonu&rft.date=2021-04-27&rft.volume=11&rft.issue=5&rft.spage=549&rft.pages=549-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci11050549&rft_dat=%3Cproquest_doaj_%3E2532319760%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532319760&rft_id=info:pmid/33925493&rfr_iscdi=true |