Loading…

Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review

Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Alth...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2021-04, Vol.11 (5), p.549
Main Authors: Pradhan, Jonu, Bellingham, Mark C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3
cites cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3
container_end_page
container_issue 5
container_start_page 549
container_title Brain sciences
container_volume 11
creator Pradhan, Jonu
Bellingham, Mark C
description Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.
doi_str_mv 10.3390/brainsci11050549
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740</doaj_id><sourcerecordid>2532319760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</originalsourceid><addsrcrecordid>eNpdks1v1DAQxSMEaqvSe08oEhcuAX_GMQek1aqllRaQgJ4t25nsepXYi50U8t_X2y1VW19sed77ad5oiuIco4-USvTJRO18sg5jxBFn8lVxQpCoK8oIf_3kfVycpbRF-TQIUY6OiuPsJ9lBT4rwHaYYdps5udCHtbO6L7-B3Wjv0pDKG99C7Gfn1-UyxPG-fDXvIFYX_6wbtXG9G-fS-XIxzGHck5wtV3qEmJW_bA8xJJc-l4vyJ9w6-Pu2eNPpPsHZw31a3Fxe_F5eVasfX6-Xi1VlmURjVWMhMRK5WwzApNCdaJmoG6praRjWNeqIIZQSkKjVRnDRcBAImk6KDoShp8X1gdsGvVW76AYdZxW0U_cfIa6V3ufpQbUSZMPaVhrDGQCVorEEk66mHeOCocz6cmDtJjNAa8GPOd0z6POKdxu1DreqwSwHoBnw4QEQw58J0qgGlyz0vfYQpqQIJ6jhVAicpe9fSLdhij6PKqsooViKet8ROqhsHm-K0D02g5HaL4d6uRzZ8u5piEfD_1Wgd_K_t_k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532319760</pqid></control><display><type>article</type><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Pradhan, Jonu ; Bellingham, Mark C</creator><creatorcontrib>Pradhan, Jonu ; Bellingham, Mark C</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci11050549</identifier><identifier>PMID: 33925493</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amyotrophic lateral sclerosis ; Animal diseases ; Animal models ; Disease ; electrophysiology ; Excitability ; Excitotoxicity ; Family medical history ; glutamate ; Glutamatergic transmission ; Hypotheses ; Interneurons ; Medical prognosis ; motor cortex ; Motor neurons ; Neurons ; Paralysis ; Pathology ; Patients ; Potassium ; Review ; synaptic transmission ; upper motor neuron</subject><ispartof>Brain sciences, 2021-04, Vol.11 (5), p.549</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</citedby><cites>FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</cites><orcidid>0000-0001-9189-4430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532319760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532319760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33925493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Jonu</creatorcontrib><creatorcontrib>Bellingham, Mark C</creatorcontrib><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Animal diseases</subject><subject>Animal models</subject><subject>Disease</subject><subject>electrophysiology</subject><subject>Excitability</subject><subject>Excitotoxicity</subject><subject>Family medical history</subject><subject>glutamate</subject><subject>Glutamatergic transmission</subject><subject>Hypotheses</subject><subject>Interneurons</subject><subject>Medical prognosis</subject><subject>motor cortex</subject><subject>Motor neurons</subject><subject>Neurons</subject><subject>Paralysis</subject><subject>Pathology</subject><subject>Patients</subject><subject>Potassium</subject><subject>Review</subject><subject>synaptic transmission</subject><subject>upper motor neuron</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1v1DAQxSMEaqvSe08oEhcuAX_GMQek1aqllRaQgJ4t25nsepXYi50U8t_X2y1VW19sed77ad5oiuIco4-USvTJRO18sg5jxBFn8lVxQpCoK8oIf_3kfVycpbRF-TQIUY6OiuPsJ9lBT4rwHaYYdps5udCHtbO6L7-B3Wjv0pDKG99C7Gfn1-UyxPG-fDXvIFYX_6wbtXG9G-fS-XIxzGHck5wtV3qEmJW_bA8xJJc-l4vyJ9w6-Pu2eNPpPsHZw31a3Fxe_F5eVasfX6-Xi1VlmURjVWMhMRK5WwzApNCdaJmoG6praRjWNeqIIZQSkKjVRnDRcBAImk6KDoShp8X1gdsGvVW76AYdZxW0U_cfIa6V3ufpQbUSZMPaVhrDGQCVorEEk66mHeOCocz6cmDtJjNAa8GPOd0z6POKdxu1DreqwSwHoBnw4QEQw58J0qgGlyz0vfYQpqQIJ6jhVAicpe9fSLdhij6PKqsooViKet8ROqhsHm-K0D02g5HaL4d6uRzZ8u5piEfD_1Wgd_K_t_k</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Pradhan, Jonu</creator><creator>Bellingham, Mark C</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid></search><sort><creationdate>20210427</creationdate><title>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</title><author>Pradhan, Jonu ; Bellingham, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Animal diseases</topic><topic>Animal models</topic><topic>Disease</topic><topic>electrophysiology</topic><topic>Excitability</topic><topic>Excitotoxicity</topic><topic>Family medical history</topic><topic>glutamate</topic><topic>Glutamatergic transmission</topic><topic>Hypotheses</topic><topic>Interneurons</topic><topic>Medical prognosis</topic><topic>motor cortex</topic><topic>Motor neurons</topic><topic>Neurons</topic><topic>Paralysis</topic><topic>Pathology</topic><topic>Patients</topic><topic>Potassium</topic><topic>Review</topic><topic>synaptic transmission</topic><topic>upper motor neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Jonu</creatorcontrib><creatorcontrib>Bellingham, Mark C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Jonu</au><au>Bellingham, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>549</spage><pages>549-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33925493</pmid><doi>10.3390/brainsci11050549</doi><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2021-04, Vol.11 (5), p.549
issn 2076-3425
2076-3425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d9e984dd9bb54ee3978c212f63f45740
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Amyotrophic lateral sclerosis
Animal diseases
Animal models
Disease
electrophysiology
Excitability
Excitotoxicity
Family medical history
glutamate
Glutamatergic transmission
Hypotheses
Interneurons
Medical prognosis
motor cortex
Motor neurons
Neurons
Paralysis
Pathology
Patients
Potassium
Review
synaptic transmission
upper motor neuron
title Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurophysiological%20Mechanisms%20Underlying%20Cortical%20Hyper-Excitability%20in%20Amyotrophic%20Lateral%20Sclerosis:%20A%20Review&rft.jtitle=Brain%20sciences&rft.au=Pradhan,%20Jonu&rft.date=2021-04-27&rft.volume=11&rft.issue=5&rft.spage=549&rft.pages=549-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci11050549&rft_dat=%3Cproquest_doaj_%3E2532319760%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-61791073501ee497af7d47683a69b41a60f2b2332e90dab75785e70e8f97fe7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532319760&rft_id=info:pmid/33925493&rfr_iscdi=true