Loading…
Terahertz Guided Mode Resonance Sensing Platform Based on Freestanding Dielectric Materials: High Q-Factor and Tunable Spectrum
We theoretically investigated a polyethylene-based rectangular and guided mode resonance (GMR) structure with a circular pattern by using the finite-difference time-domain (FDTD) method in the terahertz region. As the refractive index of the grating decreased, the resonance frequency increased, and...
Saved in:
Published in: | Applied sciences 2020-02, Vol.10 (3), p.1013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically investigated a polyethylene-based rectangular and guided mode resonance (GMR) structure with a circular pattern by using the finite-difference time-domain (FDTD) method in the terahertz region. As the refractive index of the grating decreased, the resonance frequency increased, and the Q-factor significantly increased because of the change in the effective refractive index. In addition, GMR was investigated with a sensing layer for sensing applications. The resonance frequency and Q-factor could be perfectly modulated by varying the complex refractive index and thickness of the sensing layer. These results indicate that GMR could be applied to highly sensitive label-free detection, using low-cost GMR sensing platforms based on dielectric materials. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10031013 |