Loading…

Association of NAT2 genetic polymorphism with the efficacy of Neurotropin® for the enhancement of aggrecan gene expression in nucleus pulposus cells: a pilot study

Intervertebral disc degeneration, one of the major causes of low-back pain, results from altered biosynthesis/turnover of extracellular matrix in the disc. Previously, we reported that the analgesic drug Neurotropin® (NTP) had an anabolic effect on glycosaminoglycan synthesis in cultured nucleus pul...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical genomics 2021-03, Vol.14 (1), p.79-11, Article 79
Main Authors: Nakai, Tomoko, Sakai, Daisuke, Nakamura, Yoshihiko, Horikita, Natsumi, Matsushita, Erika, Naiki, Mitsuru, Watanabe, Masahiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intervertebral disc degeneration, one of the major causes of low-back pain, results from altered biosynthesis/turnover of extracellular matrix in the disc. Previously, we reported that the analgesic drug Neurotropin® (NTP) had an anabolic effect on glycosaminoglycan synthesis in cultured nucleus pulposus (NP) cells via the stimulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1. However, its effect on the aggrecan core protein was not significantly detected, because of the data variance. A microarray analysis suggested that the effect of NTP on aggrecan was correlated with N-acetyltransferase 2 (NAT2), a drug-metabolizing enzyme. Specific NAT2 alleles are known to correlate with rapid, intermediate, and slow acetylation activities and side effects of various drugs. We investigated the association between the efficacy of NTP on aggrecan expression and the NAT2 genotype in cell donors. NP cells were isolated from intervertebral disc tissues donated by 31 Japanese patients (28-68 years) who underwent discectomy. NTP was added to the primary cell cultures and its effect on the aggrecan mRNA was analyzed using real-time quantitative PCR. To assess acetylator status, genotyping was performed based on the inferred NAT2 haplotypes of five common single-nucleotide polymorphisms using allele-specific PCR. The phenotype frequencies of NAT2 in the patients were 0%, 42.0%, and 58.0% for slow, intermediate, and rapid acetylators, respectively. The proportions of responders to NTP treatment (aggrecan upregulation, ≥ 1.1-fold) in the intermediate and rapid acetylators were 76.9% and 38.9%, respectively. The odds ratio of the comparison of the intermediate acetylator status between responders and nonresponders was 5.2 (95% CI 1.06-26.0, P = 0.036), and regarding the 19 male patients, this was 14.0 (95% CI 1.54-127.2, P = 0.012). In the 12 females, the effect was not correlated with NAT2 phenotype but seemed to become weaker along with aging. An intermediate acetylator status significantly favored the efficacy of NTP treatment to enhance aggrecan production in NP cells. In males, this tendency was detected with higher significance. This study provides suggestive data of the association between NAT2 variants and the efficacy of NTP treatment. Given the small sample size, results should be further confirmed.
ISSN:1755-8794
1755-8794
DOI:10.1186/s12920-021-00926-x