Loading…

The Effect of the Water Tower of Typhoon Mangkhut (2018)

On 16 September 2018, the Yangtze River Delta (YRD) experienced heavy precipitation, with the local daily precipitation exceeding 250 mm. Using ERA5 reanalysis data and satellite observations from the GPM, we review this heavy rain event in terms of its meteorological triggers and water vapor transp...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2022-04, Vol.13 (4), p.636
Main Authors: Zuo, Haosheng, Chen, Yilun, Chen, Shumin, Li, Weibiao, Zhang, Aoqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93
cites cdi_FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93
container_end_page
container_issue 4
container_start_page 636
container_title Atmosphere
container_volume 13
creator Zuo, Haosheng
Chen, Yilun
Chen, Shumin
Li, Weibiao
Zhang, Aoqi
description On 16 September 2018, the Yangtze River Delta (YRD) experienced heavy precipitation, with the local daily precipitation exceeding 250 mm. Using ERA5 reanalysis data and satellite observations from the GPM, we review this heavy rain event in terms of its meteorological triggers and water vapor transport. As the high-level water vapor produced by Typhoon Mangkhut continued to be transported northward, the precipitation in the YRD gradually increased, and stratus precipitation played a major role in this event. The high-level water vapor continued to be transported northward to the east of Taiwan Island without falling, so heavy precipitation did not appear to the east of Taiwan Island. In the present study, we suggest that the meteorological trigger of this event was mainly the gradual falling of ice particles moving northward from a high altitude. The high-level ice particles originated from the “water tower” at the center of Typhoon Mangkhut, which pumped low-level water vapor into the high-level water vapor. In general, the appearance of abnormal values of high-level water vapor transport is an important atmospheric disturbance related to heavy precipitation in the downstream areas of high-level wind, and the typhoon water tower can be used as an important forecast signal for long-distance heavy precipitation in China during the active typhoon period.
doi_str_mv 10.3390/atmos13040636
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da1599c320424e50ad5fea1dc8c59ae9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da1599c320424e50ad5fea1dc8c59ae9</doaj_id><sourcerecordid>2652953595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaJgqT16X_Cih9VJJslujlKqFipeVjyGkI9-2DY1m0X6791aER2Yr8fjzfAIuaRwi6jgzuRNbCkCB4nyhAwYVFhyjnj6Zz4no7ZdQR9cIUM-IHWz8MUkBG9zEUOR--3NZJ-KJn72tYea_W4R47Z4Ntv5-6LLxTUDWt9ckLNg1q0f_fQheX2YNOOncvbyOB3fz0qLALk0lLGKV0FKqGpvXc04U5VRtRBcyOC88FiB4h4CVYIFJRQTvpJMOnAmKByS6VHXRbPSu7TcmLTX0Sz1NxDTXJuUl3bttTNUKGWRAWfcCzBOBG-os7UVyviD1tVRa5fiR-fbrFexS9v-fc2kYEqg6HNIyiPLpti2yYffqxT0wWv9z2v8AoZsbdo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652953595</pqid></control><display><type>article</type><title>The Effect of the Water Tower of Typhoon Mangkhut (2018)</title><source>Publicly Available Content Database</source><creator>Zuo, Haosheng ; Chen, Yilun ; Chen, Shumin ; Li, Weibiao ; Zhang, Aoqi</creator><creatorcontrib>Zuo, Haosheng ; Chen, Yilun ; Chen, Shumin ; Li, Weibiao ; Zhang, Aoqi</creatorcontrib><description>On 16 September 2018, the Yangtze River Delta (YRD) experienced heavy precipitation, with the local daily precipitation exceeding 250 mm. Using ERA5 reanalysis data and satellite observations from the GPM, we review this heavy rain event in terms of its meteorological triggers and water vapor transport. As the high-level water vapor produced by Typhoon Mangkhut continued to be transported northward, the precipitation in the YRD gradually increased, and stratus precipitation played a major role in this event. The high-level water vapor continued to be transported northward to the east of Taiwan Island without falling, so heavy precipitation did not appear to the east of Taiwan Island. In the present study, we suggest that the meteorological trigger of this event was mainly the gradual falling of ice particles moving northward from a high altitude. The high-level ice particles originated from the “water tower” at the center of Typhoon Mangkhut, which pumped low-level water vapor into the high-level water vapor. In general, the appearance of abnormal values of high-level water vapor transport is an important atmospheric disturbance related to heavy precipitation in the downstream areas of high-level wind, and the typhoon water tower can be used as an important forecast signal for long-distance heavy precipitation in China during the active typhoon period.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos13040636</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atmospheric disturbances ; Atmospheric precipitations ; Climate change ; Coasts ; Cyclones ; Daily precipitation ; Heavy precipitation ; Heavy rainfall ; High altitude ; Hurricanes ; Ice particles ; Precipitation ; Rain ; Rainfall ; Satellite observation ; Topography ; Towers ; Transport ; typhoon Mangkhut ; Typhoons ; water tower ; Water towers ; Water vapor ; Water vapor transport ; Water vapour ; Weather forecasting ; Wind</subject><ispartof>Atmosphere, 2022-04, Vol.13 (4), p.636</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93</citedby><cites>FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93</cites><orcidid>0000-0003-1674-7611 ; 0000-0002-9134-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2652953595/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2652953595?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Zuo, Haosheng</creatorcontrib><creatorcontrib>Chen, Yilun</creatorcontrib><creatorcontrib>Chen, Shumin</creatorcontrib><creatorcontrib>Li, Weibiao</creatorcontrib><creatorcontrib>Zhang, Aoqi</creatorcontrib><title>The Effect of the Water Tower of Typhoon Mangkhut (2018)</title><title>Atmosphere</title><description>On 16 September 2018, the Yangtze River Delta (YRD) experienced heavy precipitation, with the local daily precipitation exceeding 250 mm. Using ERA5 reanalysis data and satellite observations from the GPM, we review this heavy rain event in terms of its meteorological triggers and water vapor transport. As the high-level water vapor produced by Typhoon Mangkhut continued to be transported northward, the precipitation in the YRD gradually increased, and stratus precipitation played a major role in this event. The high-level water vapor continued to be transported northward to the east of Taiwan Island without falling, so heavy precipitation did not appear to the east of Taiwan Island. In the present study, we suggest that the meteorological trigger of this event was mainly the gradual falling of ice particles moving northward from a high altitude. The high-level ice particles originated from the “water tower” at the center of Typhoon Mangkhut, which pumped low-level water vapor into the high-level water vapor. In general, the appearance of abnormal values of high-level water vapor transport is an important atmospheric disturbance related to heavy precipitation in the downstream areas of high-level wind, and the typhoon water tower can be used as an important forecast signal for long-distance heavy precipitation in China during the active typhoon period.</description><subject>Atmospheric disturbances</subject><subject>Atmospheric precipitations</subject><subject>Climate change</subject><subject>Coasts</subject><subject>Cyclones</subject><subject>Daily precipitation</subject><subject>Heavy precipitation</subject><subject>Heavy rainfall</subject><subject>High altitude</subject><subject>Hurricanes</subject><subject>Ice particles</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Satellite observation</subject><subject>Topography</subject><subject>Towers</subject><subject>Transport</subject><subject>typhoon Mangkhut</subject><subject>Typhoons</subject><subject>water tower</subject><subject>Water towers</subject><subject>Water vapor</subject><subject>Water vapor transport</subject><subject>Water vapour</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUE1LAzEQDaJgqT16X_Cih9VJJslujlKqFipeVjyGkI9-2DY1m0X6791aER2Yr8fjzfAIuaRwi6jgzuRNbCkCB4nyhAwYVFhyjnj6Zz4no7ZdQR9cIUM-IHWz8MUkBG9zEUOR--3NZJ-KJn72tYea_W4R47Z4Ntv5-6LLxTUDWt9ckLNg1q0f_fQheX2YNOOncvbyOB3fz0qLALk0lLGKV0FKqGpvXc04U5VRtRBcyOC88FiB4h4CVYIFJRQTvpJMOnAmKByS6VHXRbPSu7TcmLTX0Sz1NxDTXJuUl3bttTNUKGWRAWfcCzBOBG-os7UVyviD1tVRa5fiR-fbrFexS9v-fc2kYEqg6HNIyiPLpti2yYffqxT0wWv9z2v8AoZsbdo</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zuo, Haosheng</creator><creator>Chen, Yilun</creator><creator>Chen, Shumin</creator><creator>Li, Weibiao</creator><creator>Zhang, Aoqi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1674-7611</orcidid><orcidid>https://orcid.org/0000-0002-9134-9368</orcidid></search><sort><creationdate>20220401</creationdate><title>The Effect of the Water Tower of Typhoon Mangkhut (2018)</title><author>Zuo, Haosheng ; Chen, Yilun ; Chen, Shumin ; Li, Weibiao ; Zhang, Aoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric disturbances</topic><topic>Atmospheric precipitations</topic><topic>Climate change</topic><topic>Coasts</topic><topic>Cyclones</topic><topic>Daily precipitation</topic><topic>Heavy precipitation</topic><topic>Heavy rainfall</topic><topic>High altitude</topic><topic>Hurricanes</topic><topic>Ice particles</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Satellite observation</topic><topic>Topography</topic><topic>Towers</topic><topic>Transport</topic><topic>typhoon Mangkhut</topic><topic>Typhoons</topic><topic>water tower</topic><topic>Water towers</topic><topic>Water vapor</topic><topic>Water vapor transport</topic><topic>Water vapour</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Haosheng</creatorcontrib><creatorcontrib>Chen, Yilun</creatorcontrib><creatorcontrib>Chen, Shumin</creatorcontrib><creatorcontrib>Li, Weibiao</creatorcontrib><creatorcontrib>Zhang, Aoqi</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Haosheng</au><au>Chen, Yilun</au><au>Chen, Shumin</au><au>Li, Weibiao</au><au>Zhang, Aoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of the Water Tower of Typhoon Mangkhut (2018)</atitle><jtitle>Atmosphere</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>4</issue><spage>636</spage><pages>636-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>On 16 September 2018, the Yangtze River Delta (YRD) experienced heavy precipitation, with the local daily precipitation exceeding 250 mm. Using ERA5 reanalysis data and satellite observations from the GPM, we review this heavy rain event in terms of its meteorological triggers and water vapor transport. As the high-level water vapor produced by Typhoon Mangkhut continued to be transported northward, the precipitation in the YRD gradually increased, and stratus precipitation played a major role in this event. The high-level water vapor continued to be transported northward to the east of Taiwan Island without falling, so heavy precipitation did not appear to the east of Taiwan Island. In the present study, we suggest that the meteorological trigger of this event was mainly the gradual falling of ice particles moving northward from a high altitude. The high-level ice particles originated from the “water tower” at the center of Typhoon Mangkhut, which pumped low-level water vapor into the high-level water vapor. In general, the appearance of abnormal values of high-level water vapor transport is an important atmospheric disturbance related to heavy precipitation in the downstream areas of high-level wind, and the typhoon water tower can be used as an important forecast signal for long-distance heavy precipitation in China during the active typhoon period.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos13040636</doi><orcidid>https://orcid.org/0000-0003-1674-7611</orcidid><orcidid>https://orcid.org/0000-0002-9134-9368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2022-04, Vol.13 (4), p.636
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da1599c320424e50ad5fea1dc8c59ae9
source Publicly Available Content Database
subjects Atmospheric disturbances
Atmospheric precipitations
Climate change
Coasts
Cyclones
Daily precipitation
Heavy precipitation
Heavy rainfall
High altitude
Hurricanes
Ice particles
Precipitation
Rain
Rainfall
Satellite observation
Topography
Towers
Transport
typhoon Mangkhut
Typhoons
water tower
Water towers
Water vapor
Water vapor transport
Water vapour
Weather forecasting
Wind
title The Effect of the Water Tower of Typhoon Mangkhut (2018)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20the%20Water%20Tower%20of%20Typhoon%20Mangkhut%20(2018)&rft.jtitle=Atmosphere&rft.au=Zuo,%20Haosheng&rft.date=2022-04-01&rft.volume=13&rft.issue=4&rft.spage=636&rft.pages=636-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos13040636&rft_dat=%3Cproquest_doaj_%3E2652953595%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-a122747f66078ecd824297a9855456fde5e37094e0f1952f95925e7626d0daf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2652953595&rft_id=info:pmid/&rfr_iscdi=true