Loading…

Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage

Since renewable energy is rapidly growing in the active distribution networks, the integrated energy system coupled with energy storage is a promising way to address the intermittent issues of renewable sources. This paper proposes an optimal planning model for the hydrogen‐based integrated energy s...

Full description

Saved in:
Bibliographic Details
Published in:International transactions on electrical energy systems 2024-01, Vol.2024 (1)
Main Authors: Wang, Shufan, Yang, Dong, Zhang, Linglu, Chenmei, Lingzhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-f99f7534837adf24e811e7f128887051cbc3c4af975a2774503627afc95987293
container_end_page
container_issue 1
container_start_page
container_title International transactions on electrical energy systems
container_volume 2024
creator Wang, Shufan
Yang, Dong
Zhang, Linglu
Chenmei, Lingzhi
description Since renewable energy is rapidly growing in the active distribution networks, the integrated energy system coupled with energy storage is a promising way to address the intermittent issues of renewable sources. This paper proposes an optimal planning model for the hydrogen‐based integrated energy system (HIES) considering power to heat and hydrogen (P2HH) and seasonal hydrogen storage (SHS) to take full advantage of multienergy complementarity. To tackle the unstable factors introduced by renewable sources and varying loads, we apply robust optimization and stochastic programming theory to improve the robustness of the planning results. Meanwhile, we also consider the N‐1 contingency constraints to make the technology selection, capacity allocation, and economic operation more reliable. The complex constraints resulting from producing two independent binary variables are converted into mixed integer linear constraints, which can be solved effectively using the nested column‐and‐constraint generation algorithm. Numerical simulation demonstrates the effectiveness of the P2HH and SHS in reducing the total cost of the HIES planning.
doi_str_mv 10.1155/2024/1156761
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da217f94ea0343e1947cf343bd949b14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da217f94ea0343e1947cf343bd949b14</doaj_id><sourcerecordid>3134560516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-f99f7534837adf24e811e7f128887051cbc3c4af975a2774503627afc95987293</originalsourceid><addsrcrecordid>eNpNkc9Kw0AQxoMoWGpvPsCCV2P3bzZ71KKmULFYPS-TZDekpNm6mxx68xF8Rp_E1JbiXOZjmPnNDF8UXRN8R4gQU4opnw4qkQk5i0YUCxxLzNLzf_oymoSwxkMoTohMR5F9c3kfOrRsoG3rtkLWeZTtSu8q0_58fT9AMCV66ZuuNq3x1Q6tdqEzGzRzbahL4_czS5plCNoSrQwE10JzIqBV5zxU5iq6sNAEMznmcfTx9Pg-y-LF6_N8dr-ICyp4F1ulrBSMp0xCaSk3KSFGWkLTNJVYkCIvWMHBKimASskFZgmVYAslVCqpYuNofuCWDtZ66-sN-J12UOu_gvOVBt_VRWN0CZRIq7gBzDgzRHFZ2EHlpeIqJ3xg3RxYW-8-exM6vXa9H74LmhHGRTIclAxdt4euwrsQvLGnrQTrvTF6b4w-GsN-AV48fp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134560516</pqid></control><display><type>article</type><title>Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Wang, Shufan ; Yang, Dong ; Zhang, Linglu ; Chenmei, Lingzhi</creator><contributor>Xiaoqing Bai</contributor><creatorcontrib>Wang, Shufan ; Yang, Dong ; Zhang, Linglu ; Chenmei, Lingzhi ; Xiaoqing Bai</creatorcontrib><description>Since renewable energy is rapidly growing in the active distribution networks, the integrated energy system coupled with energy storage is a promising way to address the intermittent issues of renewable sources. This paper proposes an optimal planning model for the hydrogen‐based integrated energy system (HIES) considering power to heat and hydrogen (P2HH) and seasonal hydrogen storage (SHS) to take full advantage of multienergy complementarity. To tackle the unstable factors introduced by renewable sources and varying loads, we apply robust optimization and stochastic programming theory to improve the robustness of the planning results. Meanwhile, we also consider the N‐1 contingency constraints to make the technology selection, capacity allocation, and economic operation more reliable. The complex constraints resulting from producing two independent binary variables are converted into mixed integer linear constraints, which can be solved effectively using the nested column‐and‐constraint generation algorithm. Numerical simulation demonstrates the effectiveness of the P2HH and SHS in reducing the total cost of the HIES planning.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1155/2024/1156761</identifier><language>eng</language><publisher>Hoboken: Hindawi Limited</publisher><subject>Algorithms ; Alternative energy sources ; Carbon dioxide ; Complex variables ; Compressed natural gas ; Constraints ; Contingency ; Electricity ; Electricity distribution ; Energy distribution ; Energy industry ; Energy storage ; Flexibility ; Fossil fuels ; Heat ; Hydrogen ; Hydrogen production ; Hydrogen storage ; Independent variables ; Integrated energy systems ; Mathematical programming ; Mixed integer ; Renewable energy ; Renewable resources ; Robustness ; Stochastic programming</subject><ispartof>International transactions on electrical energy systems, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Shufan Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-f99f7534837adf24e811e7f128887051cbc3c4af975a2774503627afc95987293</cites><orcidid>0009-0003-3425-5618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><contributor>Xiaoqing Bai</contributor><creatorcontrib>Wang, Shufan</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Zhang, Linglu</creatorcontrib><creatorcontrib>Chenmei, Lingzhi</creatorcontrib><title>Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage</title><title>International transactions on electrical energy systems</title><description>Since renewable energy is rapidly growing in the active distribution networks, the integrated energy system coupled with energy storage is a promising way to address the intermittent issues of renewable sources. This paper proposes an optimal planning model for the hydrogen‐based integrated energy system (HIES) considering power to heat and hydrogen (P2HH) and seasonal hydrogen storage (SHS) to take full advantage of multienergy complementarity. To tackle the unstable factors introduced by renewable sources and varying loads, we apply robust optimization and stochastic programming theory to improve the robustness of the planning results. Meanwhile, we also consider the N‐1 contingency constraints to make the technology selection, capacity allocation, and economic operation more reliable. The complex constraints resulting from producing two independent binary variables are converted into mixed integer linear constraints, which can be solved effectively using the nested column‐and‐constraint generation algorithm. Numerical simulation demonstrates the effectiveness of the P2HH and SHS in reducing the total cost of the HIES planning.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Complex variables</subject><subject>Compressed natural gas</subject><subject>Constraints</subject><subject>Contingency</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy distribution</subject><subject>Energy industry</subject><subject>Energy storage</subject><subject>Flexibility</subject><subject>Fossil fuels</subject><subject>Heat</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>Independent variables</subject><subject>Integrated energy systems</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Robustness</subject><subject>Stochastic programming</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc9Kw0AQxoMoWGpvPsCCV2P3bzZ71KKmULFYPS-TZDekpNm6mxx68xF8Rp_E1JbiXOZjmPnNDF8UXRN8R4gQU4opnw4qkQk5i0YUCxxLzNLzf_oymoSwxkMoTohMR5F9c3kfOrRsoG3rtkLWeZTtSu8q0_58fT9AMCV66ZuuNq3x1Q6tdqEzGzRzbahL4_czS5plCNoSrQwE10JzIqBV5zxU5iq6sNAEMznmcfTx9Pg-y-LF6_N8dr-ICyp4F1ulrBSMp0xCaSk3KSFGWkLTNJVYkCIvWMHBKimASskFZgmVYAslVCqpYuNofuCWDtZ66-sN-J12UOu_gvOVBt_VRWN0CZRIq7gBzDgzRHFZ2EHlpeIqJ3xg3RxYW-8-exM6vXa9H74LmhHGRTIclAxdt4euwrsQvLGnrQTrvTF6b4w-GsN-AV48fp8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Wang, Shufan</creator><creator>Yang, Dong</creator><creator>Zhang, Linglu</creator><creator>Chenmei, Lingzhi</creator><general>Hindawi Limited</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-3425-5618</orcidid></search><sort><creationdate>20240101</creationdate><title>Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage</title><author>Wang, Shufan ; Yang, Dong ; Zhang, Linglu ; Chenmei, Lingzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-f99f7534837adf24e811e7f128887051cbc3c4af975a2774503627afc95987293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Complex variables</topic><topic>Compressed natural gas</topic><topic>Constraints</topic><topic>Contingency</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy distribution</topic><topic>Energy industry</topic><topic>Energy storage</topic><topic>Flexibility</topic><topic>Fossil fuels</topic><topic>Heat</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>Independent variables</topic><topic>Integrated energy systems</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Robustness</topic><topic>Stochastic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shufan</creatorcontrib><creatorcontrib>Yang, Dong</creatorcontrib><creatorcontrib>Zhang, Linglu</creatorcontrib><creatorcontrib>Chenmei, Lingzhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shufan</au><au>Yang, Dong</au><au>Zhang, Linglu</au><au>Chenmei, Lingzhi</au><au>Xiaoqing Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage</atitle><jtitle>International transactions on electrical energy systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Since renewable energy is rapidly growing in the active distribution networks, the integrated energy system coupled with energy storage is a promising way to address the intermittent issues of renewable sources. This paper proposes an optimal planning model for the hydrogen‐based integrated energy system (HIES) considering power to heat and hydrogen (P2HH) and seasonal hydrogen storage (SHS) to take full advantage of multienergy complementarity. To tackle the unstable factors introduced by renewable sources and varying loads, we apply robust optimization and stochastic programming theory to improve the robustness of the planning results. Meanwhile, we also consider the N‐1 contingency constraints to make the technology selection, capacity allocation, and economic operation more reliable. The complex constraints resulting from producing two independent binary variables are converted into mixed integer linear constraints, which can be solved effectively using the nested column‐and‐constraint generation algorithm. Numerical simulation demonstrates the effectiveness of the P2HH and SHS in reducing the total cost of the HIES planning.</abstract><cop>Hoboken</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/1156761</doi><orcidid>https://orcid.org/0009-0003-3425-5618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7038
ispartof International transactions on electrical energy systems, 2024-01, Vol.2024 (1)
issn 2050-7038
2050-7038
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da217f94ea0343e1947cf343bd949b14
source Open Access: Wiley-Blackwell Open Access Journals
subjects Algorithms
Alternative energy sources
Carbon dioxide
Complex variables
Compressed natural gas
Constraints
Contingency
Electricity
Electricity distribution
Energy distribution
Energy industry
Energy storage
Flexibility
Fossil fuels
Heat
Hydrogen
Hydrogen production
Hydrogen storage
Independent variables
Integrated energy systems
Mathematical programming
Mixed integer
Renewable energy
Renewable resources
Robustness
Stochastic programming
title Robust Planning for Hydrogen‐Based Multienergy System Considering P2HH and Seasonal Hydrogen Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Planning%20for%20Hydrogen%E2%80%90Based%20Multienergy%20System%20Considering%20P2HH%20and%20Seasonal%20Hydrogen%20Storage&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Wang,%20Shufan&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1155/2024/1156761&rft_dat=%3Cproquest_doaj_%3E3134560516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-f99f7534837adf24e811e7f128887051cbc3c4af975a2774503627afc95987293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134560516&rft_id=info:pmid/&rfr_iscdi=true