Loading…

Breast cancer survival prediction using an automated mitosis detection pipeline

Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, arti...

Full description

Saved in:
Bibliographic Details
Published in:The journal of pathology. Clinical research 2024-11, Vol.10 (6), p.e70008-n/a
Main Authors: Stathonikos, Nikolas, Aubreville, Marc, Vries, Sjoerd, Wilm, Frauke, Bertram, Christof A, Veta, Mitko, Diest, Paul J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853
container_end_page n/a
container_issue 6
container_start_page e70008
container_title The journal of pathology. Clinical research
container_volume 10
creator Stathonikos, Nikolas
Aubreville, Marc
Vries, Sjoerd
Wilm, Frauke
Bertram, Christof A
Veta, Mitko
Diest, Paul J
description Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.
doi_str_mv 10.1002/2056-4538.70008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02</doaj_id><sourcerecordid>1010022056453870008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EolXpmRuKxIXLtuPv5IRgxUerSuUAZ8uxncWrJA62s1X_Pd5NWbW9cLI1fvxoZl6E3mK4wADkkgAXK8ZpfSEBoH6BTo-Vl4_uJ-g8pW0hMMcgCXuNTmjDhMCUnqLbz9HplCujR-Nilea48zvdV1N01pvsw1jNyY-bSo-VnnMYdHa2GnwOyafKuuwWaPKT6_3o3qBXne6TO384z9Cvr19-rr-vbm6_Xa0_3awMk7ReccK6ltFWyIbQjoI0NTaUycaahnMNHRe8kwJ4SwWx2BqoC0ykI4aXkTg9Q1eL1wa9VVP0g473KmivDoUQN0rH7E3vlNWENcxQIqBhpKU1xlpKbRthASyQ4vq4uKa5HZw1bsxR90-kT19G_1ttwk7hslHGAYrhw4Mhhj-zS1kNPhnX93p0YU6KYoJJTRuCC_r-GboNcxzLrgpFaQmpPlCXC2ViSCm67tgNBrUPX-3jVft41SH88uPd4yGO_L-oCyAW4M737v5_PrW-_kEW81_O6rdG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133015821</pqid></control><display><type>article</type><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</creator><creatorcontrib>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</creatorcontrib><description>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</description><identifier>ISSN: 2056-4538</identifier><identifier>EISSN: 2056-4538</identifier><identifier>DOI: 10.1002/2056-4538.70008</identifier><identifier>PMID: 39466133</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Aged ; Algorithms ; Artificial Intelligence ; Automation ; Breast cancer ; Breast Neoplasms - mortality ; Breast Neoplasms - pathology ; Cell division ; Datasets ; Deep Learning ; Female ; histopathology ; Humans ; Image Interpretation, Computer-Assisted ; machine learning ; Medical prognosis ; Middle Aged ; Mitosis ; Mitotic Index ; Original ; outcome ; Pathology ; Patients ; Predictive Value of Tests ; Prognosis ; Reproducibility ; Reproducibility of Results ; Survival ; Yeast</subject><ispartof>The journal of pathology. Clinical research, 2024-11, Vol.10 (6), p.e70008-n/a</ispartof><rights>2024 The Author(s). published by The Pathological Society of Great Britain and Ireland and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</cites><orcidid>0000-0003-1711-3098 ; 0000-0002-2402-9997 ; 0000-0002-5457-7580 ; 0000-0002-5294-5247 ; 0000-0002-5306-6797 ; 0000-0002-9065-0554 ; 0000-0003-0658-2745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133015821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133015821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stathonikos, Nikolas</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Vries, Sjoerd</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Bertram, Christof A</creatorcontrib><creatorcontrib>Veta, Mitko</creatorcontrib><creatorcontrib>Diest, Paul J</creatorcontrib><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><title>The journal of pathology. Clinical research</title><addtitle>J Pathol Clin Res</addtitle><description>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - mortality</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell division</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Female</subject><subject>histopathology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>machine learning</subject><subject>Medical prognosis</subject><subject>Middle Aged</subject><subject>Mitosis</subject><subject>Mitotic Index</subject><subject>Original</subject><subject>outcome</subject><subject>Pathology</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Survival</subject><subject>Yeast</subject><issn>2056-4538</issn><issn>2056-4538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhi0EolXpmRuKxIXLtuPv5IRgxUerSuUAZ8uxncWrJA62s1X_Pd5NWbW9cLI1fvxoZl6E3mK4wADkkgAXK8ZpfSEBoH6BTo-Vl4_uJ-g8pW0hMMcgCXuNTmjDhMCUnqLbz9HplCujR-Nilea48zvdV1N01pvsw1jNyY-bSo-VnnMYdHa2GnwOyafKuuwWaPKT6_3o3qBXne6TO384z9Cvr19-rr-vbm6_Xa0_3awMk7ReccK6ltFWyIbQjoI0NTaUycaahnMNHRe8kwJ4SwWx2BqoC0ykI4aXkTg9Q1eL1wa9VVP0g473KmivDoUQN0rH7E3vlNWENcxQIqBhpKU1xlpKbRthASyQ4vq4uKa5HZw1bsxR90-kT19G_1ttwk7hslHGAYrhw4Mhhj-zS1kNPhnX93p0YU6KYoJJTRuCC_r-GboNcxzLrgpFaQmpPlCXC2ViSCm67tgNBrUPX-3jVft41SH88uPd4yGO_L-oCyAW4M737v5_PrW-_kEW81_O6rdG</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Stathonikos, Nikolas</creator><creator>Aubreville, Marc</creator><creator>Vries, Sjoerd</creator><creator>Wilm, Frauke</creator><creator>Bertram, Christof A</creator><creator>Veta, Mitko</creator><creator>Diest, Paul J</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1711-3098</orcidid><orcidid>https://orcid.org/0000-0002-2402-9997</orcidid><orcidid>https://orcid.org/0000-0002-5457-7580</orcidid><orcidid>https://orcid.org/0000-0002-5294-5247</orcidid><orcidid>https://orcid.org/0000-0002-5306-6797</orcidid><orcidid>https://orcid.org/0000-0002-9065-0554</orcidid><orcidid>https://orcid.org/0000-0003-0658-2745</orcidid></search><sort><creationdate>202411</creationdate><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><author>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - mortality</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell division</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Female</topic><topic>histopathology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>machine learning</topic><topic>Medical prognosis</topic><topic>Middle Aged</topic><topic>Mitosis</topic><topic>Mitotic Index</topic><topic>Original</topic><topic>outcome</topic><topic>Pathology</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Survival</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stathonikos, Nikolas</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Vries, Sjoerd</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Bertram, Christof A</creatorcontrib><creatorcontrib>Veta, Mitko</creatorcontrib><creatorcontrib>Diest, Paul J</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of pathology. Clinical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stathonikos, Nikolas</au><au>Aubreville, Marc</au><au>Vries, Sjoerd</au><au>Wilm, Frauke</au><au>Bertram, Christof A</au><au>Veta, Mitko</au><au>Diest, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer survival prediction using an automated mitosis detection pipeline</atitle><jtitle>The journal of pathology. Clinical research</jtitle><addtitle>J Pathol Clin Res</addtitle><date>2024-11</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>e70008</spage><epage>n/a</epage><pages>e70008-n/a</pages><issn>2056-4538</issn><eissn>2056-4538</eissn><abstract>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39466133</pmid><doi>10.1002/2056-4538.70008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1711-3098</orcidid><orcidid>https://orcid.org/0000-0002-2402-9997</orcidid><orcidid>https://orcid.org/0000-0002-5457-7580</orcidid><orcidid>https://orcid.org/0000-0002-5294-5247</orcidid><orcidid>https://orcid.org/0000-0002-5306-6797</orcidid><orcidid>https://orcid.org/0000-0002-9065-0554</orcidid><orcidid>https://orcid.org/0000-0003-0658-2745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-4538
ispartof The journal of pathology. Clinical research, 2024-11, Vol.10 (6), p.e70008-n/a
issn 2056-4538
2056-4538
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02
source Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central
subjects Adult
Aged
Algorithms
Artificial Intelligence
Automation
Breast cancer
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Cell division
Datasets
Deep Learning
Female
histopathology
Humans
Image Interpretation, Computer-Assisted
machine learning
Medical prognosis
Middle Aged
Mitosis
Mitotic Index
Original
outcome
Pathology
Patients
Predictive Value of Tests
Prognosis
Reproducibility
Reproducibility of Results
Survival
Yeast
title Breast cancer survival prediction using an automated mitosis detection pipeline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer%20survival%20prediction%20using%20an%20automated%20mitosis%20detection%20pipeline&rft.jtitle=The%20journal%20of%20pathology.%20Clinical%20research&rft.au=Stathonikos,%20Nikolas&rft.date=2024-11&rft.volume=10&rft.issue=6&rft.spage=e70008&rft.epage=n/a&rft.pages=e70008-n/a&rft.issn=2056-4538&rft.eissn=2056-4538&rft_id=info:doi/10.1002/2056-4538.70008&rft_dat=%3Cproquest_doaj_%3E1010022056453870008%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133015821&rft_id=info:pmid/39466133&rfr_iscdi=true