Loading…
Breast cancer survival prediction using an automated mitosis detection pipeline
Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, arti...
Saved in:
Published in: | The journal of pathology. Clinical research 2024-11, Vol.10 (6), p.e70008-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e70008 |
container_title | The journal of pathology. Clinical research |
container_volume | 10 |
creator | Stathonikos, Nikolas Aubreville, Marc Vries, Sjoerd Wilm, Frauke Bertram, Christof A Veta, Mitko Diest, Paul J |
description | Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC. |
doi_str_mv | 10.1002/2056-4538.70008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02</doaj_id><sourcerecordid>1010022056453870008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EolXpmRuKxIXLtuPv5IRgxUerSuUAZ8uxncWrJA62s1X_Pd5NWbW9cLI1fvxoZl6E3mK4wADkkgAXK8ZpfSEBoH6BTo-Vl4_uJ-g8pW0hMMcgCXuNTmjDhMCUnqLbz9HplCujR-Nilea48zvdV1N01pvsw1jNyY-bSo-VnnMYdHa2GnwOyafKuuwWaPKT6_3o3qBXne6TO384z9Cvr19-rr-vbm6_Xa0_3awMk7ReccK6ltFWyIbQjoI0NTaUycaahnMNHRe8kwJ4SwWx2BqoC0ykI4aXkTg9Q1eL1wa9VVP0g473KmivDoUQN0rH7E3vlNWENcxQIqBhpKU1xlpKbRthASyQ4vq4uKa5HZw1bsxR90-kT19G_1ttwk7hslHGAYrhw4Mhhj-zS1kNPhnX93p0YU6KYoJJTRuCC_r-GboNcxzLrgpFaQmpPlCXC2ViSCm67tgNBrUPX-3jVft41SH88uPd4yGO_L-oCyAW4M737v5_PrW-_kEW81_O6rdG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133015821</pqid></control><display><type>article</type><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</creator><creatorcontrib>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</creatorcontrib><description>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</description><identifier>ISSN: 2056-4538</identifier><identifier>EISSN: 2056-4538</identifier><identifier>DOI: 10.1002/2056-4538.70008</identifier><identifier>PMID: 39466133</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Aged ; Algorithms ; Artificial Intelligence ; Automation ; Breast cancer ; Breast Neoplasms - mortality ; Breast Neoplasms - pathology ; Cell division ; Datasets ; Deep Learning ; Female ; histopathology ; Humans ; Image Interpretation, Computer-Assisted ; machine learning ; Medical prognosis ; Middle Aged ; Mitosis ; Mitotic Index ; Original ; outcome ; Pathology ; Patients ; Predictive Value of Tests ; Prognosis ; Reproducibility ; Reproducibility of Results ; Survival ; Yeast</subject><ispartof>The journal of pathology. Clinical research, 2024-11, Vol.10 (6), p.e70008-n/a</ispartof><rights>2024 The Author(s). published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</cites><orcidid>0000-0003-1711-3098 ; 0000-0002-2402-9997 ; 0000-0002-5457-7580 ; 0000-0002-5294-5247 ; 0000-0002-5306-6797 ; 0000-0002-9065-0554 ; 0000-0003-0658-2745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133015821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133015821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stathonikos, Nikolas</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Vries, Sjoerd</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Bertram, Christof A</creatorcontrib><creatorcontrib>Veta, Mitko</creatorcontrib><creatorcontrib>Diest, Paul J</creatorcontrib><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><title>The journal of pathology. Clinical research</title><addtitle>J Pathol Clin Res</addtitle><description>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - mortality</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell division</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Female</subject><subject>histopathology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>machine learning</subject><subject>Medical prognosis</subject><subject>Middle Aged</subject><subject>Mitosis</subject><subject>Mitotic Index</subject><subject>Original</subject><subject>outcome</subject><subject>Pathology</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Survival</subject><subject>Yeast</subject><issn>2056-4538</issn><issn>2056-4538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhi0EolXpmRuKxIXLtuPv5IRgxUerSuUAZ8uxncWrJA62s1X_Pd5NWbW9cLI1fvxoZl6E3mK4wADkkgAXK8ZpfSEBoH6BTo-Vl4_uJ-g8pW0hMMcgCXuNTmjDhMCUnqLbz9HplCujR-Nilea48zvdV1N01pvsw1jNyY-bSo-VnnMYdHa2GnwOyafKuuwWaPKT6_3o3qBXne6TO384z9Cvr19-rr-vbm6_Xa0_3awMk7ReccK6ltFWyIbQjoI0NTaUycaahnMNHRe8kwJ4SwWx2BqoC0ykI4aXkTg9Q1eL1wa9VVP0g473KmivDoUQN0rH7E3vlNWENcxQIqBhpKU1xlpKbRthASyQ4vq4uKa5HZw1bsxR90-kT19G_1ttwk7hslHGAYrhw4Mhhj-zS1kNPhnX93p0YU6KYoJJTRuCC_r-GboNcxzLrgpFaQmpPlCXC2ViSCm67tgNBrUPX-3jVft41SH88uPd4yGO_L-oCyAW4M737v5_PrW-_kEW81_O6rdG</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Stathonikos, Nikolas</creator><creator>Aubreville, Marc</creator><creator>Vries, Sjoerd</creator><creator>Wilm, Frauke</creator><creator>Bertram, Christof A</creator><creator>Veta, Mitko</creator><creator>Diest, Paul J</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1711-3098</orcidid><orcidid>https://orcid.org/0000-0002-2402-9997</orcidid><orcidid>https://orcid.org/0000-0002-5457-7580</orcidid><orcidid>https://orcid.org/0000-0002-5294-5247</orcidid><orcidid>https://orcid.org/0000-0002-5306-6797</orcidid><orcidid>https://orcid.org/0000-0002-9065-0554</orcidid><orcidid>https://orcid.org/0000-0003-0658-2745</orcidid></search><sort><creationdate>202411</creationdate><title>Breast cancer survival prediction using an automated mitosis detection pipeline</title><author>Stathonikos, Nikolas ; Aubreville, Marc ; Vries, Sjoerd ; Wilm, Frauke ; Bertram, Christof A ; Veta, Mitko ; Diest, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - mortality</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell division</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Female</topic><topic>histopathology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>machine learning</topic><topic>Medical prognosis</topic><topic>Middle Aged</topic><topic>Mitosis</topic><topic>Mitotic Index</topic><topic>Original</topic><topic>outcome</topic><topic>Pathology</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Survival</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stathonikos, Nikolas</creatorcontrib><creatorcontrib>Aubreville, Marc</creatorcontrib><creatorcontrib>Vries, Sjoerd</creatorcontrib><creatorcontrib>Wilm, Frauke</creatorcontrib><creatorcontrib>Bertram, Christof A</creatorcontrib><creatorcontrib>Veta, Mitko</creatorcontrib><creatorcontrib>Diest, Paul J</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of pathology. Clinical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stathonikos, Nikolas</au><au>Aubreville, Marc</au><au>Vries, Sjoerd</au><au>Wilm, Frauke</au><au>Bertram, Christof A</au><au>Veta, Mitko</au><au>Diest, Paul J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer survival prediction using an automated mitosis detection pipeline</atitle><jtitle>The journal of pathology. Clinical research</jtitle><addtitle>J Pathol Clin Res</addtitle><date>2024-11</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>e70008</spage><epage>n/a</epage><pages>e70008-n/a</pages><issn>2056-4538</issn><eissn>2056-4538</eissn><abstract>Mitotic count (MC) is the most common measure to assess tumor proliferation in breast cancer patients and is highly predictive of patient outcomes. It is, however, subject to inter‐ and intraobserver variation and reproducibility challenges that may hamper its clinical utility. In past studies, artificial intelligence (AI)‐supported MC has been shown to correlate well with traditional MC on glass slides. Considering the potential of AI to improve reproducibility of MC between pathologists, we undertook the next validation step by evaluating the prognostic value of a fully automatic method to detect and count mitoses on whole slide images using a deep learning model. The model was developed in the context of the Mitosis Domain Generalization Challenge 2021 (MIDOG21) grand challenge and was expanded by a novel automatic area selector method to find the optimal mitotic hotspot and calculate the MC per 2 mm2. We employed this method on a breast cancer cohort with long‐term follow‐up from the University Medical Centre Utrecht (N = 912) and compared predictive values for overall survival of AI‐based MC and light‐microscopic MC, previously assessed during routine diagnostics. The MIDOG21 model was prognostically comparable to the original MC from the pathology report in uni‐ and multivariate survival analysis. In conclusion, a fully automated MC AI algorithm was validated in a large cohort of breast cancer with regard to retained prognostic value compared with traditional light‐microscopic MC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39466133</pmid><doi>10.1002/2056-4538.70008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1711-3098</orcidid><orcidid>https://orcid.org/0000-0002-2402-9997</orcidid><orcidid>https://orcid.org/0000-0002-5457-7580</orcidid><orcidid>https://orcid.org/0000-0002-5294-5247</orcidid><orcidid>https://orcid.org/0000-0002-5306-6797</orcidid><orcidid>https://orcid.org/0000-0002-9065-0554</orcidid><orcidid>https://orcid.org/0000-0003-0658-2745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-4538 |
ispartof | The journal of pathology. Clinical research, 2024-11, Vol.10 (6), p.e70008-n/a |
issn | 2056-4538 2056-4538 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_da2494c3260942b3811a77ad96d00d02 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central |
subjects | Adult Aged Algorithms Artificial Intelligence Automation Breast cancer Breast Neoplasms - mortality Breast Neoplasms - pathology Cell division Datasets Deep Learning Female histopathology Humans Image Interpretation, Computer-Assisted machine learning Medical prognosis Middle Aged Mitosis Mitotic Index Original outcome Pathology Patients Predictive Value of Tests Prognosis Reproducibility Reproducibility of Results Survival Yeast |
title | Breast cancer survival prediction using an automated mitosis detection pipeline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer%20survival%20prediction%20using%20an%20automated%20mitosis%20detection%20pipeline&rft.jtitle=The%20journal%20of%20pathology.%20Clinical%20research&rft.au=Stathonikos,%20Nikolas&rft.date=2024-11&rft.volume=10&rft.issue=6&rft.spage=e70008&rft.epage=n/a&rft.pages=e70008-n/a&rft.issn=2056-4538&rft.eissn=2056-4538&rft_id=info:doi/10.1002/2056-4538.70008&rft_dat=%3Cproquest_doaj_%3E1010022056453870008%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4738-524fb43b67923f307c81c3479dc955a0f565f7605b362d1dc083b627e2c553853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133015821&rft_id=info:pmid/39466133&rfr_iscdi=true |