Loading…
Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer
It is a fact that surface electron accumulation layer with sheet electron density in the magnitude of ~10 cm on InN, either as-grown or Mg-doped, makes InN an excellent candidate for sensing application. In this paper, the response of hydrogen sensors based on Mg-doped InN films (InN:Mg) grown by mo...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2018-06, Vol.18 (7), p.2065 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is a fact that surface electron accumulation layer with sheet electron density in the magnitude of ~10
cm
on InN, either as-grown or Mg-doped, makes InN an excellent candidate for sensing application. In this paper, the response of hydrogen sensors based on Mg-doped InN films (InN:Mg) grown by molecular beam epitaxy has been investigated. The sensor exhibits a resistance variation ratio of 16.8% with response/recovery times of less than 2 min under exposure to 2000 ppm H₂/air at 125 °C, which is 60% higher in the magnitude of response than the one based on the as-grown InN film. Hall-effect measurement shows that the InN:Mg with suitable Mg doping level exhibits larger sheet resistance, which accords with buried p-type conduction in the InN bulk. This work shows the advantage of InN:Mg and signifies its potential for sensing application. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18072065 |