Loading…

Pedestrian load models of footbridges

The increase of vibration problems in modern footbridges shows that footbridges should no longer be designed for static loads only. Not only natural frequencies but also damping properties and pedestrian loading determine the dynamic response of footbridges and design tools should consider all of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Máca, Jiří, Štěpánek, Jan
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3
cites cdi_FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3
container_end_page
container_issue
container_start_page 9
container_title
container_volume 107
creator Máca, Jiří
Štěpánek, Jan
description The increase of vibration problems in modern footbridges shows that footbridges should no longer be designed for static loads only. Not only natural frequencies but also damping properties and pedestrian loading determine the dynamic response of footbridges and design tools should consider all of these factors. In this paper the pedestrian load models for serviceability verification of footbridges, which are missing in the current European codes, are presented. For simplicity reasons the proposed pedestrian load models are based on stationary pulsating loads instead of moving pulsating loads. It is shown that simplified procedure can be used in verification of the serviceability limit state related to vibration due to pedestrians. Footbridge vibrations don’t cause usually structural problems, but if the vibration behaviour does not satisfy the comfort criteria, changes in the design or damping devices could be considered. The most popular external damping devices are viscous dampers and tuned mass dampers (TMD). The efficiency of TMD is demonstrated on the example of a footbridge prone to vibrations induced by pedestrians. It is shown that if the TMD is tuned quite precisely the reduction of accelerations can be very significant.
doi_str_mv 10.1051/matecconf/201710700009
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da2e52698dc847e58da15fe154440b5a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da2e52698dc847e58da15fe154440b5a</doaj_id><sourcerecordid>2057233751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3</originalsourceid><addsrcrecordid>eNpNkEtLQzEQhYMoWLR_QS6Iy2vzfiyl-CgUdKHgLuQmk3LLbVOT24X_3mildDYzDIfvzByEbgi-J1iQ2caN4H3axhnFRBGscC1zhiaUStJSJj_PT-ZLNC1lXRWEGYWNmqC7NwhQxty7bTMkF5pNCjCUJsUmpjR2uQ8rKNfoIrqhwPS_X6GPp8f3-Uu7fH1ezB-Wra-8sVVBKoFFpFAnInSIIkjqaddhriQHybDxhnOhhCZGg-kw0VEbx3xQVAC7QosDNyS3trvcb1z-tsn19m-R8sq6PPZ-ABscBUGl0cFrrqCaOSIiEME5x51wlXV7YO1y-trXH-067fO2nm8pFooypgSpKnlQ-ZxKyRCPrgTb34TtMWF7mjD7AYCsbmE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2057233751</pqid></control><display><type>conference_proceeding</type><title>Pedestrian load models of footbridges</title><source>Publicly Available Content (ProQuest)</source><creator>Máca, Jiří ; Štěpánek, Jan</creator><contributor>Kotrasova, K. ; Melcer, J.</contributor><creatorcontrib>Máca, Jiří ; Štěpánek, Jan ; Kotrasova, K. ; Melcer, J.</creatorcontrib><description>The increase of vibration problems in modern footbridges shows that footbridges should no longer be designed for static loads only. Not only natural frequencies but also damping properties and pedestrian loading determine the dynamic response of footbridges and design tools should consider all of these factors. In this paper the pedestrian load models for serviceability verification of footbridges, which are missing in the current European codes, are presented. For simplicity reasons the proposed pedestrian load models are based on stationary pulsating loads instead of moving pulsating loads. It is shown that simplified procedure can be used in verification of the serviceability limit state related to vibration due to pedestrians. Footbridge vibrations don’t cause usually structural problems, but if the vibration behaviour does not satisfy the comfort criteria, changes in the design or damping devices could be considered. The most popular external damping devices are viscous dampers and tuned mass dampers (TMD). The efficiency of TMD is demonstrated on the example of a footbridge prone to vibrations induced by pedestrians. It is shown that if the TMD is tuned quite precisely the reduction of accelerations can be very significant.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201710700009</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Dampers ; Dynamic response ; Load ; Pedestrian bridges ; Pedestrians ; Product design ; Resonant frequencies ; Static loads ; Vibration ; Vibration control ; Vibration isolators ; Viscous damping</subject><ispartof>MATEC web of conferences, 2017, Vol.107, p.9</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3</citedby><cites>FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2057233751?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Kotrasova, K.</contributor><contributor>Melcer, J.</contributor><creatorcontrib>Máca, Jiří</creatorcontrib><creatorcontrib>Štěpánek, Jan</creatorcontrib><title>Pedestrian load models of footbridges</title><title>MATEC web of conferences</title><description>The increase of vibration problems in modern footbridges shows that footbridges should no longer be designed for static loads only. Not only natural frequencies but also damping properties and pedestrian loading determine the dynamic response of footbridges and design tools should consider all of these factors. In this paper the pedestrian load models for serviceability verification of footbridges, which are missing in the current European codes, are presented. For simplicity reasons the proposed pedestrian load models are based on stationary pulsating loads instead of moving pulsating loads. It is shown that simplified procedure can be used in verification of the serviceability limit state related to vibration due to pedestrians. Footbridge vibrations don’t cause usually structural problems, but if the vibration behaviour does not satisfy the comfort criteria, changes in the design or damping devices could be considered. The most popular external damping devices are viscous dampers and tuned mass dampers (TMD). The efficiency of TMD is demonstrated on the example of a footbridge prone to vibrations induced by pedestrians. It is shown that if the TMD is tuned quite precisely the reduction of accelerations can be very significant.</description><subject>Dampers</subject><subject>Dynamic response</subject><subject>Load</subject><subject>Pedestrian bridges</subject><subject>Pedestrians</subject><subject>Product design</subject><subject>Resonant frequencies</subject><subject>Static loads</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Vibration isolators</subject><subject>Viscous damping</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLQzEQhYMoWLR_QS6Iy2vzfiyl-CgUdKHgLuQmk3LLbVOT24X_3mildDYzDIfvzByEbgi-J1iQ2caN4H3axhnFRBGscC1zhiaUStJSJj_PT-ZLNC1lXRWEGYWNmqC7NwhQxty7bTMkF5pNCjCUJsUmpjR2uQ8rKNfoIrqhwPS_X6GPp8f3-Uu7fH1ezB-Wra-8sVVBKoFFpFAnInSIIkjqaddhriQHybDxhnOhhCZGg-kw0VEbx3xQVAC7QosDNyS3trvcb1z-tsn19m-R8sq6PPZ-ABscBUGl0cFrrqCaOSIiEME5x51wlXV7YO1y-trXH-067fO2nm8pFooypgSpKnlQ-ZxKyRCPrgTb34TtMWF7mjD7AYCsbmE</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Máca, Jiří</creator><creator>Štěpánek, Jan</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>Pedestrian load models of footbridges</title><author>Máca, Jiří ; Štěpánek, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dampers</topic><topic>Dynamic response</topic><topic>Load</topic><topic>Pedestrian bridges</topic><topic>Pedestrians</topic><topic>Product design</topic><topic>Resonant frequencies</topic><topic>Static loads</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Vibration isolators</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Máca, Jiří</creatorcontrib><creatorcontrib>Štěpánek, Jan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Máca, Jiří</au><au>Štěpánek, Jan</au><au>Kotrasova, K.</au><au>Melcer, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pedestrian load models of footbridges</atitle><btitle>MATEC web of conferences</btitle><date>2017-01-01</date><risdate>2017</risdate><volume>107</volume><spage>9</spage><pages>9-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>The increase of vibration problems in modern footbridges shows that footbridges should no longer be designed for static loads only. Not only natural frequencies but also damping properties and pedestrian loading determine the dynamic response of footbridges and design tools should consider all of these factors. In this paper the pedestrian load models for serviceability verification of footbridges, which are missing in the current European codes, are presented. For simplicity reasons the proposed pedestrian load models are based on stationary pulsating loads instead of moving pulsating loads. It is shown that simplified procedure can be used in verification of the serviceability limit state related to vibration due to pedestrians. Footbridge vibrations don’t cause usually structural problems, but if the vibration behaviour does not satisfy the comfort criteria, changes in the design or damping devices could be considered. The most popular external damping devices are viscous dampers and tuned mass dampers (TMD). The efficiency of TMD is demonstrated on the example of a footbridge prone to vibrations induced by pedestrians. It is shown that if the TMD is tuned quite precisely the reduction of accelerations can be very significant.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201710700009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2017, Vol.107, p.9
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da2e52698dc847e58da15fe154440b5a
source Publicly Available Content (ProQuest)
subjects Dampers
Dynamic response
Load
Pedestrian bridges
Pedestrians
Product design
Resonant frequencies
Static loads
Vibration
Vibration control
Vibration isolators
Viscous damping
title Pedestrian load models of footbridges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pedestrian%20load%20models%20of%20footbridges&rft.btitle=MATEC%20web%20of%20conferences&rft.au=M%C3%A1ca,%20Ji%C5%99%C3%AD&rft.date=2017-01-01&rft.volume=107&rft.spage=9&rft.pages=9-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201710700009&rft_dat=%3Cproquest_doaj_%3E2057233751%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-7d67505f2e7d6158df5d62c2bb04764e6309c9445758198e9b018f89a3cd725e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057233751&rft_id=info:pmid/&rfr_iscdi=true