Loading…
A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection
As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-drive...
Saved in:
Published in: | Applied sciences 2019-05, Vol.9 (10), p.2110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9102110 |