Loading…
A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection
As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-drive...
Saved in:
Published in: | Applied sciences 2019-05, Vol.9 (10), p.2110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153 |
container_end_page | |
container_issue | 10 |
container_start_page | 2110 |
container_title | Applied sciences |
container_volume | 9 |
creator | Gu, Yating Wang, Yantian Li, Yansheng |
description | As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU. |
doi_str_mv | 10.3390/app9102110 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054</doaj_id><sourcerecordid>2331447040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</originalsourceid><addsrcrecordid>eNpNkc9qGzEQxpfSQkOaS55A0FvppiNpd7XbW3Ca1GAI5M9ZzEqzRsaWtpJsyGv0iaPGpq0uI_3mm280TFVdcriScoBvOM8DB8E5vKvOBKiulg1X7_-7f6wuUtpAOQOXPYez6vc1e9zHA72w4NkN0cxWhNE7v65vojuQZw-0C5nYI_lUKFvucF1ehjyxZ28ppozelsz3E1xsMSU3OYPZBf_1RB8oR0cH3LKiPrL6bu8sWXY_bsjk0jyXUEo-VR8m3Ca6OMXz6vn2x9PiZ726v1surle1kR3PtQBoJy6ARBkZRjRqGKdODcpy6lGOHShQOIyN6ZDaCTiqXk5iUqKVOPJWnlfLo68NuNFzdDuMLzqg028gxLXGmJ3ZkrYoJRmLBjg1Vsi-Jd73goh3RkDbFK_PR685hl97Sllvwj768n0tpORNo6CBovpyVJkYUoo0_e3KQf9Zof63QvkKIZKN9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331447040</pqid></control><display><type>article</type><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><source>Publicly Available Content Database</source><creator>Gu, Yating ; Wang, Yantian ; Li, Yansheng</creator><creatorcontrib>Gu, Yating ; Wang, Yantian ; Li, Yansheng</creatorcontrib><description>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9102110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Classification ; Deep learning ; Image classification ; Image detection ; Image management ; Image retrieval ; Learning algorithms ; Machine learning ; Pattern recognition ; Remote sensing ; remote sensing image object detection ; remote sensing image scene classification ; remote sensing image scene retrieval ; remote sensing image scene understanding (RSISU) ; Scene analysis ; Semantics ; Sensors</subject><ispartof>Applied sciences, 2019-05, Vol.9 (10), p.2110</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</citedby><cites>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</cites><orcidid>0000-0001-8312-2473 ; 0000-0001-8203-1246 ; 0000-0003-2686-5275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331447040/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331447040?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Gu, Yating</creatorcontrib><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Li, Yansheng</creatorcontrib><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><title>Applied sciences</title><description>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Pattern recognition</subject><subject>Remote sensing</subject><subject>remote sensing image object detection</subject><subject>remote sensing image scene classification</subject><subject>remote sensing image scene retrieval</subject><subject>remote sensing image scene understanding (RSISU)</subject><subject>Scene analysis</subject><subject>Semantics</subject><subject>Sensors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9qGzEQxpfSQkOaS55A0FvppiNpd7XbW3Ca1GAI5M9ZzEqzRsaWtpJsyGv0iaPGpq0uI_3mm280TFVdcriScoBvOM8DB8E5vKvOBKiulg1X7_-7f6wuUtpAOQOXPYez6vc1e9zHA72w4NkN0cxWhNE7v65vojuQZw-0C5nYI_lUKFvucF1ehjyxZ28ppozelsz3E1xsMSU3OYPZBf_1RB8oR0cH3LKiPrL6bu8sWXY_bsjk0jyXUEo-VR8m3Ca6OMXz6vn2x9PiZ726v1surle1kR3PtQBoJy6ARBkZRjRqGKdODcpy6lGOHShQOIyN6ZDaCTiqXk5iUqKVOPJWnlfLo68NuNFzdDuMLzqg028gxLXGmJ3ZkrYoJRmLBjg1Vsi-Jd73goh3RkDbFK_PR685hl97Sllvwj768n0tpORNo6CBovpyVJkYUoo0_e3KQf9Zof63QvkKIZKN9Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gu, Yating</creator><creator>Wang, Yantian</creator><creator>Li, Yansheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8312-2473</orcidid><orcidid>https://orcid.org/0000-0001-8203-1246</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid></search><sort><creationdate>20190501</creationdate><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><author>Gu, Yating ; Wang, Yantian ; Li, Yansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Pattern recognition</topic><topic>Remote sensing</topic><topic>remote sensing image object detection</topic><topic>remote sensing image scene classification</topic><topic>remote sensing image scene retrieval</topic><topic>remote sensing image scene understanding (RSISU)</topic><topic>Scene analysis</topic><topic>Semantics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yating</creatorcontrib><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Li, Yansheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yating</au><au>Wang, Yantian</au><au>Li, Yansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</atitle><jtitle>Applied sciences</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>2110</spage><pages>2110-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9102110</doi><orcidid>https://orcid.org/0000-0001-8312-2473</orcidid><orcidid>https://orcid.org/0000-0001-8203-1246</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019-05, Vol.9 (10), p.2110 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054 |
source | Publicly Available Content Database |
subjects | Accuracy Artificial intelligence Classification Deep learning Image classification Image detection Image management Image retrieval Learning algorithms Machine learning Pattern recognition Remote sensing remote sensing image object detection remote sensing image scene classification remote sensing image scene retrieval remote sensing image scene understanding (RSISU) Scene analysis Semantics Sensors |
title | A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Deep%20Learning-Driven%20Remote%20Sensing%20Image%20Scene%20Understanding:%20Scene%20Classification,%20Scene%20Retrieval%20and%20Scene-Guided%20Object%20Detection&rft.jtitle=Applied%20sciences&rft.au=Gu,%20Yating&rft.date=2019-05-01&rft.volume=9&rft.issue=10&rft.spage=2110&rft.pages=2110-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9102110&rft_dat=%3Cproquest_doaj_%3E2331447040%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331447040&rft_id=info:pmid/&rfr_iscdi=true |