Loading…

A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection

As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-drive...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-05, Vol.9 (10), p.2110
Main Authors: Gu, Yating, Wang, Yantian, Li, Yansheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153
cites cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153
container_end_page
container_issue 10
container_start_page 2110
container_title Applied sciences
container_volume 9
creator Gu, Yating
Wang, Yantian
Li, Yansheng
description As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.
doi_str_mv 10.3390/app9102110
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054</doaj_id><sourcerecordid>2331447040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</originalsourceid><addsrcrecordid>eNpNkc9qGzEQxpfSQkOaS55A0FvppiNpd7XbW3Ca1GAI5M9ZzEqzRsaWtpJsyGv0iaPGpq0uI_3mm280TFVdcriScoBvOM8DB8E5vKvOBKiulg1X7_-7f6wuUtpAOQOXPYez6vc1e9zHA72w4NkN0cxWhNE7v65vojuQZw-0C5nYI_lUKFvucF1ehjyxZ28ppozelsz3E1xsMSU3OYPZBf_1RB8oR0cH3LKiPrL6bu8sWXY_bsjk0jyXUEo-VR8m3Ca6OMXz6vn2x9PiZ726v1surle1kR3PtQBoJy6ARBkZRjRqGKdODcpy6lGOHShQOIyN6ZDaCTiqXk5iUqKVOPJWnlfLo68NuNFzdDuMLzqg028gxLXGmJ3ZkrYoJRmLBjg1Vsi-Jd73goh3RkDbFK_PR685hl97Sllvwj768n0tpORNo6CBovpyVJkYUoo0_e3KQf9Zof63QvkKIZKN9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331447040</pqid></control><display><type>article</type><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><source>Publicly Available Content Database</source><creator>Gu, Yating ; Wang, Yantian ; Li, Yansheng</creator><creatorcontrib>Gu, Yating ; Wang, Yantian ; Li, Yansheng</creatorcontrib><description>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9102110</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Classification ; Deep learning ; Image classification ; Image detection ; Image management ; Image retrieval ; Learning algorithms ; Machine learning ; Pattern recognition ; Remote sensing ; remote sensing image object detection ; remote sensing image scene classification ; remote sensing image scene retrieval ; remote sensing image scene understanding (RSISU) ; Scene analysis ; Semantics ; Sensors</subject><ispartof>Applied sciences, 2019-05, Vol.9 (10), p.2110</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</citedby><cites>FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</cites><orcidid>0000-0001-8312-2473 ; 0000-0001-8203-1246 ; 0000-0003-2686-5275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331447040/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331447040?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Gu, Yating</creatorcontrib><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Li, Yansheng</creatorcontrib><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><title>Applied sciences</title><description>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Pattern recognition</subject><subject>Remote sensing</subject><subject>remote sensing image object detection</subject><subject>remote sensing image scene classification</subject><subject>remote sensing image scene retrieval</subject><subject>remote sensing image scene understanding (RSISU)</subject><subject>Scene analysis</subject><subject>Semantics</subject><subject>Sensors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc9qGzEQxpfSQkOaS55A0FvppiNpd7XbW3Ca1GAI5M9ZzEqzRsaWtpJsyGv0iaPGpq0uI_3mm280TFVdcriScoBvOM8DB8E5vKvOBKiulg1X7_-7f6wuUtpAOQOXPYez6vc1e9zHA72w4NkN0cxWhNE7v65vojuQZw-0C5nYI_lUKFvucF1ehjyxZ28ppozelsz3E1xsMSU3OYPZBf_1RB8oR0cH3LKiPrL6bu8sWXY_bsjk0jyXUEo-VR8m3Ca6OMXz6vn2x9PiZ726v1surle1kR3PtQBoJy6ARBkZRjRqGKdODcpy6lGOHShQOIyN6ZDaCTiqXk5iUqKVOPJWnlfLo68NuNFzdDuMLzqg028gxLXGmJ3ZkrYoJRmLBjg1Vsi-Jd73goh3RkDbFK_PR685hl97Sllvwj768n0tpORNo6CBovpyVJkYUoo0_e3KQf9Zof63QvkKIZKN9Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gu, Yating</creator><creator>Wang, Yantian</creator><creator>Li, Yansheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8312-2473</orcidid><orcidid>https://orcid.org/0000-0001-8203-1246</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid></search><sort><creationdate>20190501</creationdate><title>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</title><author>Gu, Yating ; Wang, Yantian ; Li, Yansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Pattern recognition</topic><topic>Remote sensing</topic><topic>remote sensing image object detection</topic><topic>remote sensing image scene classification</topic><topic>remote sensing image scene retrieval</topic><topic>remote sensing image scene understanding (RSISU)</topic><topic>Scene analysis</topic><topic>Semantics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yating</creatorcontrib><creatorcontrib>Wang, Yantian</creatorcontrib><creatorcontrib>Li, Yansheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yating</au><au>Wang, Yantian</au><au>Li, Yansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection</atitle><jtitle>Applied sciences</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>2110</spage><pages>2110-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9102110</doi><orcidid>https://orcid.org/0000-0001-8312-2473</orcidid><orcidid>https://orcid.org/0000-0001-8203-1246</orcidid><orcidid>https://orcid.org/0000-0003-2686-5275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-05, Vol.9 (10), p.2110
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da33ecdac01e4d2385e1882ee16c2054
source Publicly Available Content Database
subjects Accuracy
Artificial intelligence
Classification
Deep learning
Image classification
Image detection
Image management
Image retrieval
Learning algorithms
Machine learning
Pattern recognition
Remote sensing
remote sensing image object detection
remote sensing image scene classification
remote sensing image scene retrieval
remote sensing image scene understanding (RSISU)
Scene analysis
Semantics
Sensors
title A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Deep%20Learning-Driven%20Remote%20Sensing%20Image%20Scene%20Understanding:%20Scene%20Classification,%20Scene%20Retrieval%20and%20Scene-Guided%20Object%20Detection&rft.jtitle=Applied%20sciences&rft.au=Gu,%20Yating&rft.date=2019-05-01&rft.volume=9&rft.issue=10&rft.spage=2110&rft.pages=2110-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9102110&rft_dat=%3Cproquest_doaj_%3E2331447040%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2005f120e20210bac79bf6797d1e8a3b60707a9b4c6ae5f01a783f2f7253ab153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331447040&rft_id=info:pmid/&rfr_iscdi=true