Loading…
Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks
Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously unexplored as functional memristive elements within highly interconnected nanowire networks, were employed as a neuromorphic substrate for physical Reservoir Computing This new class of ASN-based devices has been...
Saved in:
Published in: | Frontiers in nanotechnology 2021-05, Vol.3 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously unexplored as functional memristive elements within highly interconnected nanowire networks, were employed as a neuromorphic substrate for physical Reservoir Computing This new class of ASN-based devices has been physically characterized and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based device architectures where intrinsic material properties can be exploited to perform computation in-materio. This work demonstrates high accuracy in the classification of temporally analyzed Free-Spoken Digit Data These results expand upon the class of viable memristive materials available for the production of functional nanowire networks and bolster the utility of ASN-based devices as unique hardware platforms for neuromorphic computing applications involving memory, adaptation and learning. |
---|---|
ISSN: | 2673-3013 2673-3013 |
DOI: | 10.3389/fnano.2021.675792 |