Loading…
A Blind Spectrum Sensing Method Based on Deep Learning
Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal i...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-05, Vol.19 (10), p.2270 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3 |
container_end_page | |
container_issue | 10 |
container_start_page | 2270 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Yang, Kai Huang, Zhitao Wang, Xiang Li, Xueqiong |
description | Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance. |
doi_str_mv | 10.3390/s19102270 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3</doaj_id><sourcerecordid>2301640441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw4A-gSFzgsDD22Il9QWrLV6VFHApny7En26yy9mInSPx7DFtWLSdbnkePZ-Zl7DmHN4gG3hZuOAjRwQN2yqWQKy0EPLxzP2FPStkCCETUj9kJcg5ggJ-y9ry5mMYYmus9-Tkvu-aaYhnjpvlC800KzYUrFJoUm_dE-2ZNLsdafcoeDW4q9Oz2PGPfP374dvl5tf766eryfL3yCtW8QgHQ96ENTmjiAQiDMmhaBcK3BIMWxgiuTU_oufSkeqMEePBOKd0Zh2fs6uANyW3tPo87l3_Z5Eb79yHljXV5Hv1ENjg1GAINEr0EPRjd9Uab-oP3gRxW17uDa7_0Owqe4pzddE96vxLHG7tJP22r2g67rgpe3Qpy-rFQme1uLJ6myUVKS7FC1HmV7MBU9OV_6DYtOdZVWYHAWwlS8kq9PlA-p1IyDcdmONg_ydpjspV9cbf7I_kvSvwNsdyaug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301640441</pqid></control><display><type>article</type><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><source>PubMed Central (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</creator><creatorcontrib>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</creatorcontrib><description>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19102270</identifier><identifier>PMID: 31100901</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Classification ; Communication ; convolutional neural networks ; Deep learning ; International conferences ; Licenses ; long short-term memory ; Machine learning ; Methods ; Neural networks ; Noise ; Pattern recognition ; Signal to noise ratio ; spectrum sensing ; Time series ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2019-05, Vol.19 (10), p.2270</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</citedby><cites>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</cites><orcidid>0000-0001-9007-6030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301640441/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301640441?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31100901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Huang, Zhitao</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Xueqiong</creatorcontrib><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Communication</subject><subject>convolutional neural networks</subject><subject>Deep learning</subject><subject>International conferences</subject><subject>Licenses</subject><subject>long short-term memory</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Signal to noise ratio</subject><subject>spectrum sensing</subject><subject>Time series</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhi0EoqVw4A-gSFzgsDD22Il9QWrLV6VFHApny7En26yy9mInSPx7DFtWLSdbnkePZ-Zl7DmHN4gG3hZuOAjRwQN2yqWQKy0EPLxzP2FPStkCCETUj9kJcg5ggJ-y9ry5mMYYmus9-Tkvu-aaYhnjpvlC800KzYUrFJoUm_dE-2ZNLsdafcoeDW4q9Oz2PGPfP374dvl5tf766eryfL3yCtW8QgHQ96ENTmjiAQiDMmhaBcK3BIMWxgiuTU_oufSkeqMEePBOKd0Zh2fs6uANyW3tPo87l3_Z5Eb79yHljXV5Hv1ENjg1GAINEr0EPRjd9Uab-oP3gRxW17uDa7_0Owqe4pzddE96vxLHG7tJP22r2g67rgpe3Qpy-rFQme1uLJ6myUVKS7FC1HmV7MBU9OV_6DYtOdZVWYHAWwlS8kq9PlA-p1IyDcdmONg_ydpjspV9cbf7I_kvSvwNsdyaug</recordid><startdate>20190516</startdate><enddate>20190516</enddate><creator>Yang, Kai</creator><creator>Huang, Zhitao</creator><creator>Wang, Xiang</creator><creator>Li, Xueqiong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9007-6030</orcidid></search><sort><creationdate>20190516</creationdate><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><author>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Communication</topic><topic>convolutional neural networks</topic><topic>Deep learning</topic><topic>International conferences</topic><topic>Licenses</topic><topic>long short-term memory</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Signal to noise ratio</topic><topic>spectrum sensing</topic><topic>Time series</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Huang, Zhitao</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Xueqiong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kai</au><au>Huang, Zhitao</au><au>Wang, Xiang</au><au>Li, Xueqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Blind Spectrum Sensing Method Based on Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-05-16</date><risdate>2019</risdate><volume>19</volume><issue>10</issue><spage>2270</spage><pages>2270-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31100901</pmid><doi>10.3390/s19102270</doi><orcidid>https://orcid.org/0000-0001-9007-6030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-05, Vol.19 (10), p.2270 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3 |
source | PubMed Central (Open access); Publicly Available Content (ProQuest) |
subjects | Artificial intelligence Classification Communication convolutional neural networks Deep learning International conferences Licenses long short-term memory Machine learning Methods Neural networks Noise Pattern recognition Signal to noise ratio spectrum sensing Time series Wireless networks |
title | A Blind Spectrum Sensing Method Based on Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Blind%20Spectrum%20Sensing%20Method%20Based%20on%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yang,%20Kai&rft.date=2019-05-16&rft.volume=19&rft.issue=10&rft.spage=2270&rft.pages=2270-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19102270&rft_dat=%3Cproquest_doaj_%3E2301640441%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301640441&rft_id=info:pmid/31100901&rfr_iscdi=true |