Loading…

A Blind Spectrum Sensing Method Based on Deep Learning

Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal i...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-05, Vol.19 (10), p.2270
Main Authors: Yang, Kai, Huang, Zhitao, Wang, Xiang, Li, Xueqiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3
cites cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3
container_end_page
container_issue 10
container_start_page 2270
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Yang, Kai
Huang, Zhitao
Wang, Xiang
Li, Xueqiong
description Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.
doi_str_mv 10.3390/s19102270
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3</doaj_id><sourcerecordid>2301640441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw4A-gSFzgsDD22Il9QWrLV6VFHApny7En26yy9mInSPx7DFtWLSdbnkePZ-Zl7DmHN4gG3hZuOAjRwQN2yqWQKy0EPLxzP2FPStkCCETUj9kJcg5ggJ-y9ry5mMYYmus9-Tkvu-aaYhnjpvlC800KzYUrFJoUm_dE-2ZNLsdafcoeDW4q9Oz2PGPfP374dvl5tf766eryfL3yCtW8QgHQ96ENTmjiAQiDMmhaBcK3BIMWxgiuTU_oufSkeqMEePBOKd0Zh2fs6uANyW3tPo87l3_Z5Eb79yHljXV5Hv1ENjg1GAINEr0EPRjd9Uab-oP3gRxW17uDa7_0Owqe4pzddE96vxLHG7tJP22r2g67rgpe3Qpy-rFQme1uLJ6myUVKS7FC1HmV7MBU9OV_6DYtOdZVWYHAWwlS8kq9PlA-p1IyDcdmONg_ydpjspV9cbf7I_kvSvwNsdyaug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301640441</pqid></control><display><type>article</type><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><source>PubMed Central (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</creator><creatorcontrib>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</creatorcontrib><description>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19102270</identifier><identifier>PMID: 31100901</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Classification ; Communication ; convolutional neural networks ; Deep learning ; International conferences ; Licenses ; long short-term memory ; Machine learning ; Methods ; Neural networks ; Noise ; Pattern recognition ; Signal to noise ratio ; spectrum sensing ; Time series ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2019-05, Vol.19 (10), p.2270</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</citedby><cites>FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</cites><orcidid>0000-0001-9007-6030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301640441/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301640441?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31100901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Huang, Zhitao</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Xueqiong</creatorcontrib><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Communication</subject><subject>convolutional neural networks</subject><subject>Deep learning</subject><subject>International conferences</subject><subject>Licenses</subject><subject>long short-term memory</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Signal to noise ratio</subject><subject>spectrum sensing</subject><subject>Time series</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhi0EoqVw4A-gSFzgsDD22Il9QWrLV6VFHApny7En26yy9mInSPx7DFtWLSdbnkePZ-Zl7DmHN4gG3hZuOAjRwQN2yqWQKy0EPLxzP2FPStkCCETUj9kJcg5ggJ-y9ry5mMYYmus9-Tkvu-aaYhnjpvlC800KzYUrFJoUm_dE-2ZNLsdafcoeDW4q9Oz2PGPfP374dvl5tf766eryfL3yCtW8QgHQ96ENTmjiAQiDMmhaBcK3BIMWxgiuTU_oufSkeqMEePBOKd0Zh2fs6uANyW3tPo87l3_Z5Eb79yHljXV5Hv1ENjg1GAINEr0EPRjd9Uab-oP3gRxW17uDa7_0Owqe4pzddE96vxLHG7tJP22r2g67rgpe3Qpy-rFQme1uLJ6myUVKS7FC1HmV7MBU9OV_6DYtOdZVWYHAWwlS8kq9PlA-p1IyDcdmONg_ydpjspV9cbf7I_kvSvwNsdyaug</recordid><startdate>20190516</startdate><enddate>20190516</enddate><creator>Yang, Kai</creator><creator>Huang, Zhitao</creator><creator>Wang, Xiang</creator><creator>Li, Xueqiong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9007-6030</orcidid></search><sort><creationdate>20190516</creationdate><title>A Blind Spectrum Sensing Method Based on Deep Learning</title><author>Yang, Kai ; Huang, Zhitao ; Wang, Xiang ; Li, Xueqiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Communication</topic><topic>convolutional neural networks</topic><topic>Deep learning</topic><topic>International conferences</topic><topic>Licenses</topic><topic>long short-term memory</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Signal to noise ratio</topic><topic>spectrum sensing</topic><topic>Time series</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kai</creatorcontrib><creatorcontrib>Huang, Zhitao</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Xueqiong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kai</au><au>Huang, Zhitao</au><au>Wang, Xiang</au><au>Li, Xueqiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Blind Spectrum Sensing Method Based on Deep Learning</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-05-16</date><risdate>2019</risdate><volume>19</volume><issue>10</issue><spage>2270</spage><pages>2270-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31100901</pmid><doi>10.3390/s19102270</doi><orcidid>https://orcid.org/0000-0001-9007-6030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-05, Vol.19 (10), p.2270
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da5f9e08043c408f987b989299ccdea3
source PubMed Central (Open access); Publicly Available Content (ProQuest)
subjects Artificial intelligence
Classification
Communication
convolutional neural networks
Deep learning
International conferences
Licenses
long short-term memory
Machine learning
Methods
Neural networks
Noise
Pattern recognition
Signal to noise ratio
spectrum sensing
Time series
Wireless networks
title A Blind Spectrum Sensing Method Based on Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Blind%20Spectrum%20Sensing%20Method%20Based%20on%20Deep%20Learning&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yang,%20Kai&rft.date=2019-05-16&rft.volume=19&rft.issue=10&rft.spage=2270&rft.pages=2270-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19102270&rft_dat=%3Cproquest_doaj_%3E2301640441%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-3200bbd6da28e1d0e3d59396502c6e0f82992189be3c14ce5b9520c0ca55879a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301640441&rft_id=info:pmid/31100901&rfr_iscdi=true