Loading…
Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis
A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov mod...
Saved in:
Published in: | Mathematics (Basel) 2024-01, Vol.12 (2), p.292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3 |
container_end_page | |
container_issue | 2 |
container_start_page | 292 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Andrews, John Lunt, Sally |
description | A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system. |
doi_str_mv | 10.3390/math12020292 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808</doaj_id><sourcerecordid>2918780258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDUlu_QGCXutWH_shHYObpIaEHmqfxaw0smXklStpA0v-fNZ2KZk5zGPmzRseU1VfGP0uhKI_DlB2jNM5Ff9QXXHOu0U3Dz6-w5-r25z3dA7FhKzVVfW6hGDGAMXHgURHyg7JnykXPJDNAC_gA_Q--DKRZ4Q8Jswn1jIejnHAoZDVDFKBwSDZZD9szwI_-ZrP_LKLNoa4nU4rDzCGQtYJkdwNEKbs8031yUHIePuvXlebh_v18tfi6ffjann3tDC8qctCGGYa0aNprLFG2MaBc71qW8Ulo5IK1lDjqLK9oy2zks_2asZUx21vQPbiulpddG2EvT4mf4A06QhenxsxbTWk4k1AbaGlxkh0fYd1q7BnijlaO2TCoKRy1vp60Tqm-HfEXPQ-jmk2lDVXTHaS8ubE-nZhmRRzTuj-X2VUn76l339LvAFOkIjq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918780258</pqid></control><display><type>article</type><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Andrews, John ; Lunt, Sally</creator><creatorcontrib>Andrews, John ; Lunt, Sally</creatorcontrib><description>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12020292</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Causality ; Cooling ; Cooling systems ; Criticality aspects ; dependent failures ; dynamic and dependent tree theory ; Engineering ; Failure ; Fault tree analysis ; Human error ; Markov chains ; Methods ; Petri nets ; Pressure vessels ; Probability ; Risk management ; system failure modelling ; system unavailability assessment</subject><ispartof>Mathematics (Basel), 2024-01, Vol.12 (2), p.292</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</cites><orcidid>0000-0002-2316-3959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918780258/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918780258?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Andrews, John</creatorcontrib><creatorcontrib>Lunt, Sally</creatorcontrib><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><title>Mathematics (Basel)</title><description>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Causality</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Criticality aspects</subject><subject>dependent failures</subject><subject>dynamic and dependent tree theory</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fault tree analysis</subject><subject>Human error</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Petri nets</subject><subject>Pressure vessels</subject><subject>Probability</subject><subject>Risk management</subject><subject>system failure modelling</subject><subject>system unavailability assessment</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDUlu_QGCXutWH_shHYObpIaEHmqfxaw0smXklStpA0v-fNZ2KZk5zGPmzRseU1VfGP0uhKI_DlB2jNM5Ff9QXXHOu0U3Dz6-w5-r25z3dA7FhKzVVfW6hGDGAMXHgURHyg7JnykXPJDNAC_gA_Q--DKRZ4Q8Jswn1jIejnHAoZDVDFKBwSDZZD9szwI_-ZrP_LKLNoa4nU4rDzCGQtYJkdwNEKbs8031yUHIePuvXlebh_v18tfi6ffjann3tDC8qctCGGYa0aNprLFG2MaBc71qW8Ulo5IK1lDjqLK9oy2zks_2asZUx21vQPbiulpddG2EvT4mf4A06QhenxsxbTWk4k1AbaGlxkh0fYd1q7BnijlaO2TCoKRy1vp60Tqm-HfEXPQ-jmk2lDVXTHaS8ubE-nZhmRRzTuj-X2VUn76l339LvAFOkIjq</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Andrews, John</creator><creator>Lunt, Sally</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2316-3959</orcidid></search><sort><creationdate>20240101</creationdate><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><author>Andrews, John ; Lunt, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Causality</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Criticality aspects</topic><topic>dependent failures</topic><topic>dynamic and dependent tree theory</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fault tree analysis</topic><topic>Human error</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Petri nets</topic><topic>Pressure vessels</topic><topic>Probability</topic><topic>Risk management</topic><topic>system failure modelling</topic><topic>system unavailability assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, John</creatorcontrib><creatorcontrib>Lunt, Sally</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, John</au><au>Lunt, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>292</spage><pages>292-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12020292</doi><orcidid>https://orcid.org/0000-0002-2316-3959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-01, Vol.12 (2), p.292 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Approximation Causality Cooling Cooling systems Criticality aspects dependent failures dynamic and dependent tree theory Engineering Failure Fault tree analysis Human error Markov chains Methods Petri nets Pressure vessels Probability Risk management system failure modelling system unavailability assessment |
title | Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20System%20Unavailability%20Measures%20of%20Component%20Importance%20Using%20the%20D2T2%20Methodology%20of%20Fault%20Tree%20Analysis&rft.jtitle=Mathematics%20(Basel)&rft.au=Andrews,%20John&rft.date=2024-01-01&rft.volume=12&rft.issue=2&rft.spage=292&rft.pages=292-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12020292&rft_dat=%3Cproquest_doaj_%3E2918780258%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918780258&rft_id=info:pmid/&rfr_iscdi=true |