Loading…

Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis

A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov mod...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-01, Vol.12 (2), p.292
Main Authors: Andrews, John, Lunt, Sally
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3
container_end_page
container_issue 2
container_start_page 292
container_title Mathematics (Basel)
container_volume 12
creator Andrews, John
Lunt, Sally
description A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.
doi_str_mv 10.3390/math12020292
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808</doaj_id><sourcerecordid>2918780258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDUlu_QGCXutWH_shHYObpIaEHmqfxaw0smXklStpA0v-fNZ2KZk5zGPmzRseU1VfGP0uhKI_DlB2jNM5Ff9QXXHOu0U3Dz6-w5-r25z3dA7FhKzVVfW6hGDGAMXHgURHyg7JnykXPJDNAC_gA_Q--DKRZ4Q8Jswn1jIejnHAoZDVDFKBwSDZZD9szwI_-ZrP_LKLNoa4nU4rDzCGQtYJkdwNEKbs8031yUHIePuvXlebh_v18tfi6ffjann3tDC8qctCGGYa0aNprLFG2MaBc71qW8Ulo5IK1lDjqLK9oy2zks_2asZUx21vQPbiulpddG2EvT4mf4A06QhenxsxbTWk4k1AbaGlxkh0fYd1q7BnijlaO2TCoKRy1vp60Tqm-HfEXPQ-jmk2lDVXTHaS8ubE-nZhmRRzTuj-X2VUn76l339LvAFOkIjq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918780258</pqid></control><display><type>article</type><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Andrews, John ; Lunt, Sally</creator><creatorcontrib>Andrews, John ; Lunt, Sally</creatorcontrib><description>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12020292</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Causality ; Cooling ; Cooling systems ; Criticality aspects ; dependent failures ; dynamic and dependent tree theory ; Engineering ; Failure ; Fault tree analysis ; Human error ; Markov chains ; Methods ; Petri nets ; Pressure vessels ; Probability ; Risk management ; system failure modelling ; system unavailability assessment</subject><ispartof>Mathematics (Basel), 2024-01, Vol.12 (2), p.292</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</cites><orcidid>0000-0002-2316-3959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918780258/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918780258?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Andrews, John</creatorcontrib><creatorcontrib>Lunt, Sally</creatorcontrib><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><title>Mathematics (Basel)</title><description>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Causality</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Criticality aspects</subject><subject>dependent failures</subject><subject>dynamic and dependent tree theory</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fault tree analysis</subject><subject>Human error</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Petri nets</subject><subject>Pressure vessels</subject><subject>Probability</subject><subject>Risk management</subject><subject>system failure modelling</subject><subject>system unavailability assessment</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDUlu_QGCXutWH_shHYObpIaEHmqfxaw0smXklStpA0v-fNZ2KZk5zGPmzRseU1VfGP0uhKI_DlB2jNM5Ff9QXXHOu0U3Dz6-w5-r25z3dA7FhKzVVfW6hGDGAMXHgURHyg7JnykXPJDNAC_gA_Q--DKRZ4Q8Jswn1jIejnHAoZDVDFKBwSDZZD9szwI_-ZrP_LKLNoa4nU4rDzCGQtYJkdwNEKbs8031yUHIePuvXlebh_v18tfi6ffjann3tDC8qctCGGYa0aNprLFG2MaBc71qW8Ulo5IK1lDjqLK9oy2zks_2asZUx21vQPbiulpddG2EvT4mf4A06QhenxsxbTWk4k1AbaGlxkh0fYd1q7BnijlaO2TCoKRy1vp60Tqm-HfEXPQ-jmk2lDVXTHaS8ubE-nZhmRRzTuj-X2VUn76l339LvAFOkIjq</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Andrews, John</creator><creator>Lunt, Sally</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2316-3959</orcidid></search><sort><creationdate>20240101</creationdate><title>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</title><author>Andrews, John ; Lunt, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Causality</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Criticality aspects</topic><topic>dependent failures</topic><topic>dynamic and dependent tree theory</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fault tree analysis</topic><topic>Human error</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Petri nets</topic><topic>Pressure vessels</topic><topic>Probability</topic><topic>Risk management</topic><topic>system failure modelling</topic><topic>system unavailability assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, John</creatorcontrib><creatorcontrib>Lunt, Sally</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, John</au><au>Lunt, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>292</spage><pages>292-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree Theory (D2T2), accounts for dependencies between the basic events, making FTA more powerful. The method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets (SPN) and Markov models. Current algorithms enable the prediction of the system failure probability and failure frequency. This paper proposes methods which extend the current capability of the D2T2 framework to calculate component importance measures. Birnbaum’s measure of importance, the Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability to the framework, enabling the influence that components have on system failure to be determined and the most effective means of improving system performance to be identified. The algorithms for calculating each measure of importance are described and demonstrated using a pressure vessel cooling system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12020292</doi><orcidid>https://orcid.org/0000-0002-2316-3959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-01, Vol.12 (2), p.292
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da60cc8efb7e469eb191f04fe13ce808
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Approximation
Causality
Cooling
Cooling systems
Criticality aspects
dependent failures
dynamic and dependent tree theory
Engineering
Failure
Fault tree analysis
Human error
Markov chains
Methods
Petri nets
Pressure vessels
Probability
Risk management
system failure modelling
system unavailability assessment
title Calculation of the System Unavailability Measures of Component Importance Using the D2T2 Methodology of Fault Tree Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20the%20System%20Unavailability%20Measures%20of%20Component%20Importance%20Using%20the%20D2T2%20Methodology%20of%20Fault%20Tree%20Analysis&rft.jtitle=Mathematics%20(Basel)&rft.au=Andrews,%20John&rft.date=2024-01-01&rft.volume=12&rft.issue=2&rft.spage=292&rft.pages=292-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12020292&rft_dat=%3Cproquest_doaj_%3E2918780258%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-3c1c53bec5dcdc3d5faffb96692810803150cf09dbf061d82000411972dbca8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918780258&rft_id=info:pmid/&rfr_iscdi=true