Loading…

Virus-induced gene silencing for phenylalanine ammonia-lyase affects pepper adaption to low temperature

Reverse genetics approaches in plants rely on post-transcriptional gene silencing to study the function of genes. In particular, virus-induced gene silencing (VIGS) has been successfully applied to identify gene function in some crops. To date, it is unclear whether phenylalanine ammonia-lyase (PAL)...

Full description

Saved in:
Bibliographic Details
Published in:Biologia plantarum 2019-01, Vol.63 (1), p.601-609
Main Authors: CHENG, G.-X., SUN, J.-T., SHANG, J.-P., GONG, Z.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reverse genetics approaches in plants rely on post-transcriptional gene silencing to study the function of genes. In particular, virus-induced gene silencing (VIGS) has been successfully applied to identify gene function in some crops. To date, it is unclear whether phenylalanine ammonia-lyase (PAL) is involved in low temperature tolerance in the pepper. Here, we used an agroinfiltration protocol with tobacco rattle virus (TRV) constructs containing partial sequences from CaPAL for VIGS to test its role in anthocyanin biosynthesis and response to low temperature in the pepper (Capsicum annuum). We found that accumulation of anthocyanins in the leaves of pepper plants transformed with the TRV2:CaPAL vector was significantly reduced compared with peppers transformed with the empty TRV2 vector (TRV2:00). A significant reduction in expression of genes related to anthocyanins synthesis was also detected in peppers transformed with TRV2:CaPAL. When silenced pepper plants were exposed to a low temperature, we found decreased antioxidant system, PAL activity, and photosynthesis in plants transformed with TRV2:CaPAL compared with peppers transformed with TRV2:00. Low transcriptions of cold stress-response genes demonstrated that pepper tolerance to low temperature decreased. Future studies focused on the interaction between CaPAL and other abiotic and biotic stressors will shed further light into the role of CaPAL in stress response.
ISSN:0006-3134
1573-8264
DOI:10.32615/bp.2019.063