Loading…
CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties
The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been w...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (4), p.1954 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743 |
container_end_page | |
container_issue | 4 |
container_start_page | 1954 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 28 |
creator | Fernandez-Izquierdo, Leunam Spera, Enzo Luigi Durán, Boris Marotti, Ricardo Enrique Dalchiele, Enrique Ariel Del Rio, Rodrigo Hevia, Samuel A |
description | The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm
was obtained for a film with a thickness of around 220 nm under solar irradiation. |
doi_str_mv | 10.3390/molecules28041954 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743211621</galeid><doaj_id>oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a</doaj_id><sourcerecordid>A743211621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</originalsourceid><addsrcrecordid>eNplks1u1DAUhSMEoqXwAGyQJTZspvgvjs0CqZr-SpUYqQWWkePczHiUxIPtgHgHHpobplQtKAtH1-d8Pte-RfGa0WMhDH0_hB7c1EPimkpmSvmkOGSS04Wg0jx98H9QvEhpSylnkpXPiwOhtNBG8sPi1_LLKbmI4UfekNCRSxhs9hnI7caP5Nz3QyJdiGS1CTkAnpZjcBsYvLM9-WozRHKz633Oflx_IGddh4qZs4oYLKYQFzdTk3JEJTn1KdvRAQkj4sFH5I-IWcWwg5g9pJfFs872CV7drUfF5_Oz2-Xl4vrTxdXy5HrhSsHzwjRC0VLxRrNWl2VTaqUl1nSllaIgZMvLpuJOV8a2Da-olK1kthSuRWslxVFxtee2wW7rXfSDjT_rYH39pxDiurYYyPVQt1YLwUA6ClI6B402zrZaddxgGGGR9XHP2k3NAK2DEbvtH0Ef74x-U6_D99oYhXk5At7dAWL4NkHK9eCTg763I4Qp1bzSlGpG1Zz77T_SbZgi3uGsqowqZUUVqo73qrXFBvzYBTzX4dfO7xZG6DzWT_AeOGOKMzSwvcHFkFKE7j49o_U8aPV_g4aeNw_bvnf8nSzxG_vk0eE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779654706</pqid></control><display><type>article</type><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</creator><creatorcontrib>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</creatorcontrib><description>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm
was obtained for a film with a thickness of around 220 nm under solar irradiation.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28041954</identifier><identifier>PMID: 36838942</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chemical vapor deposition ; Dielectric films ; Electrochemistry ; Electrodes ; Fluorine ; Green hydrogen ; Hematite ; Hydrogen production ; Irradiation ; Morphology ; Nanocrystals ; Photoelectric effect ; Precursors ; Radiation ; Scanning electron microscopy ; Solar energy ; Solar radiation ; Spectrum analysis ; Splitting ; Structural analysis ; Substrates ; Thickness ; thin film ; Thin films ; Tin oxides ; Water splitting</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1954</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</citedby><cites>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</cites><orcidid>0000-0003-0315-6660 ; 0000-0003-2141-5574 ; 0000-0002-9380-7799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779654706/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779654706?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36838942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez-Izquierdo, Leunam</creatorcontrib><creatorcontrib>Spera, Enzo Luigi</creatorcontrib><creatorcontrib>Durán, Boris</creatorcontrib><creatorcontrib>Marotti, Ricardo Enrique</creatorcontrib><creatorcontrib>Dalchiele, Enrique Ariel</creatorcontrib><creatorcontrib>Del Rio, Rodrigo</creatorcontrib><creatorcontrib>Hevia, Samuel A</creatorcontrib><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm
was obtained for a film with a thickness of around 220 nm under solar irradiation.</description><subject>Chemical vapor deposition</subject><subject>Dielectric films</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Fluorine</subject><subject>Green hydrogen</subject><subject>Hematite</subject><subject>Hydrogen production</subject><subject>Irradiation</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Photoelectric effect</subject><subject>Precursors</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Structural analysis</subject><subject>Substrates</subject><subject>Thickness</subject><subject>thin film</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>Water splitting</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplks1u1DAUhSMEoqXwAGyQJTZspvgvjs0CqZr-SpUYqQWWkePczHiUxIPtgHgHHpobplQtKAtH1-d8Pte-RfGa0WMhDH0_hB7c1EPimkpmSvmkOGSS04Wg0jx98H9QvEhpSylnkpXPiwOhtNBG8sPi1_LLKbmI4UfekNCRSxhs9hnI7caP5Nz3QyJdiGS1CTkAnpZjcBsYvLM9-WozRHKz633Oflx_IGddh4qZs4oYLKYQFzdTk3JEJTn1KdvRAQkj4sFH5I-IWcWwg5g9pJfFs872CV7drUfF5_Oz2-Xl4vrTxdXy5HrhSsHzwjRC0VLxRrNWl2VTaqUl1nSllaIgZMvLpuJOV8a2Da-olK1kthSuRWslxVFxtee2wW7rXfSDjT_rYH39pxDiurYYyPVQt1YLwUA6ClI6B402zrZaddxgGGGR9XHP2k3NAK2DEbvtH0Ef74x-U6_D99oYhXk5At7dAWL4NkHK9eCTg763I4Qp1bzSlGpG1Zz77T_SbZgi3uGsqowqZUUVqo73qrXFBvzYBTzX4dfO7xZG6DzWT_AeOGOKMzSwvcHFkFKE7j49o_U8aPV_g4aeNw_bvnf8nSzxG_vk0eE</recordid><startdate>20230218</startdate><enddate>20230218</enddate><creator>Fernandez-Izquierdo, Leunam</creator><creator>Spera, Enzo Luigi</creator><creator>Durán, Boris</creator><creator>Marotti, Ricardo Enrique</creator><creator>Dalchiele, Enrique Ariel</creator><creator>Del Rio, Rodrigo</creator><creator>Hevia, Samuel A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0315-6660</orcidid><orcidid>https://orcid.org/0000-0003-2141-5574</orcidid><orcidid>https://orcid.org/0000-0002-9380-7799</orcidid></search><sort><creationdate>20230218</creationdate><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><author>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Dielectric films</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Fluorine</topic><topic>Green hydrogen</topic><topic>Hematite</topic><topic>Hydrogen production</topic><topic>Irradiation</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Photoelectric effect</topic><topic>Precursors</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Structural analysis</topic><topic>Substrates</topic><topic>Thickness</topic><topic>thin film</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Izquierdo, Leunam</creatorcontrib><creatorcontrib>Spera, Enzo Luigi</creatorcontrib><creatorcontrib>Durán, Boris</creatorcontrib><creatorcontrib>Marotti, Ricardo Enrique</creatorcontrib><creatorcontrib>Dalchiele, Enrique Ariel</creatorcontrib><creatorcontrib>Del Rio, Rodrigo</creatorcontrib><creatorcontrib>Hevia, Samuel A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Izquierdo, Leunam</au><au>Spera, Enzo Luigi</au><au>Durán, Boris</au><au>Marotti, Ricardo Enrique</au><au>Dalchiele, Enrique Ariel</au><au>Del Rio, Rodrigo</au><au>Hevia, Samuel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2023-02-18</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1954</spage><pages>1954-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm
was obtained for a film with a thickness of around 220 nm under solar irradiation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36838942</pmid><doi>10.3390/molecules28041954</doi><orcidid>https://orcid.org/0000-0003-0315-6660</orcidid><orcidid>https://orcid.org/0000-0003-2141-5574</orcidid><orcidid>https://orcid.org/0000-0002-9380-7799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1954 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | Chemical vapor deposition Dielectric films Electrochemistry Electrodes Fluorine Green hydrogen Hematite Hydrogen production Irradiation Morphology Nanocrystals Photoelectric effect Precursors Radiation Scanning electron microscopy Solar energy Solar radiation Spectrum analysis Splitting Structural analysis Substrates Thickness thin film Thin films Tin oxides Water splitting |
title | CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVD%20Growth%20of%20Hematite%20Thin%20Films%20for%20Photoelectrochemical%20Water%20Splitting:%20Effect%20of%20Precursor-Substrate%20Distance%20on%20Their%20Final%20Properties&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fernandez-Izquierdo,%20Leunam&rft.date=2023-02-18&rft.volume=28&rft.issue=4&rft.spage=1954&rft.pages=1954-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28041954&rft_dat=%3Cgale_doaj_%3EA743211621%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779654706&rft_id=info:pmid/36838942&rft_galeid=A743211621&rfr_iscdi=true |