Loading…

CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties

The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been w...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-02, Vol.28 (4), p.1954
Main Authors: Fernandez-Izquierdo, Leunam, Spera, Enzo Luigi, Durán, Boris, Marotti, Ricardo Enrique, Dalchiele, Enrique Ariel, Del Rio, Rodrigo, Hevia, Samuel A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743
cites cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743
container_end_page
container_issue 4
container_start_page 1954
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Fernandez-Izquierdo, Leunam
Spera, Enzo Luigi
Durán, Boris
Marotti, Ricardo Enrique
Dalchiele, Enrique Ariel
Del Rio, Rodrigo
Hevia, Samuel A
description The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm was obtained for a film with a thickness of around 220 nm under solar irradiation.
doi_str_mv 10.3390/molecules28041954
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743211621</galeid><doaj_id>oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a</doaj_id><sourcerecordid>A743211621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</originalsourceid><addsrcrecordid>eNplks1u1DAUhSMEoqXwAGyQJTZspvgvjs0CqZr-SpUYqQWWkePczHiUxIPtgHgHHpobplQtKAtH1-d8Pte-RfGa0WMhDH0_hB7c1EPimkpmSvmkOGSS04Wg0jx98H9QvEhpSylnkpXPiwOhtNBG8sPi1_LLKbmI4UfekNCRSxhs9hnI7caP5Nz3QyJdiGS1CTkAnpZjcBsYvLM9-WozRHKz633Oflx_IGddh4qZs4oYLKYQFzdTk3JEJTn1KdvRAQkj4sFH5I-IWcWwg5g9pJfFs872CV7drUfF5_Oz2-Xl4vrTxdXy5HrhSsHzwjRC0VLxRrNWl2VTaqUl1nSllaIgZMvLpuJOV8a2Da-olK1kthSuRWslxVFxtee2wW7rXfSDjT_rYH39pxDiurYYyPVQt1YLwUA6ClI6B402zrZaddxgGGGR9XHP2k3NAK2DEbvtH0Ef74x-U6_D99oYhXk5At7dAWL4NkHK9eCTg763I4Qp1bzSlGpG1Zz77T_SbZgi3uGsqowqZUUVqo73qrXFBvzYBTzX4dfO7xZG6DzWT_AeOGOKMzSwvcHFkFKE7j49o_U8aPV_g4aeNw_bvnf8nSzxG_vk0eE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779654706</pqid></control><display><type>article</type><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</creator><creatorcontrib>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</creatorcontrib><description>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm was obtained for a film with a thickness of around 220 nm under solar irradiation.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28041954</identifier><identifier>PMID: 36838942</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chemical vapor deposition ; Dielectric films ; Electrochemistry ; Electrodes ; Fluorine ; Green hydrogen ; Hematite ; Hydrogen production ; Irradiation ; Morphology ; Nanocrystals ; Photoelectric effect ; Precursors ; Radiation ; Scanning electron microscopy ; Solar energy ; Solar radiation ; Spectrum analysis ; Splitting ; Structural analysis ; Substrates ; Thickness ; thin film ; Thin films ; Tin oxides ; Water splitting</subject><ispartof>Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1954</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</citedby><cites>FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</cites><orcidid>0000-0003-0315-6660 ; 0000-0003-2141-5574 ; 0000-0002-9380-7799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779654706/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779654706?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36838942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez-Izquierdo, Leunam</creatorcontrib><creatorcontrib>Spera, Enzo Luigi</creatorcontrib><creatorcontrib>Durán, Boris</creatorcontrib><creatorcontrib>Marotti, Ricardo Enrique</creatorcontrib><creatorcontrib>Dalchiele, Enrique Ariel</creatorcontrib><creatorcontrib>Del Rio, Rodrigo</creatorcontrib><creatorcontrib>Hevia, Samuel A</creatorcontrib><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm was obtained for a film with a thickness of around 220 nm under solar irradiation.</description><subject>Chemical vapor deposition</subject><subject>Dielectric films</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Fluorine</subject><subject>Green hydrogen</subject><subject>Hematite</subject><subject>Hydrogen production</subject><subject>Irradiation</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Photoelectric effect</subject><subject>Precursors</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Structural analysis</subject><subject>Substrates</subject><subject>Thickness</subject><subject>thin film</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>Water splitting</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplks1u1DAUhSMEoqXwAGyQJTZspvgvjs0CqZr-SpUYqQWWkePczHiUxIPtgHgHHpobplQtKAtH1-d8Pte-RfGa0WMhDH0_hB7c1EPimkpmSvmkOGSS04Wg0jx98H9QvEhpSylnkpXPiwOhtNBG8sPi1_LLKbmI4UfekNCRSxhs9hnI7caP5Nz3QyJdiGS1CTkAnpZjcBsYvLM9-WozRHKz633Oflx_IGddh4qZs4oYLKYQFzdTk3JEJTn1KdvRAQkj4sFH5I-IWcWwg5g9pJfFs872CV7drUfF5_Oz2-Xl4vrTxdXy5HrhSsHzwjRC0VLxRrNWl2VTaqUl1nSllaIgZMvLpuJOV8a2Da-olK1kthSuRWslxVFxtee2wW7rXfSDjT_rYH39pxDiurYYyPVQt1YLwUA6ClI6B402zrZaddxgGGGR9XHP2k3NAK2DEbvtH0Ef74x-U6_D99oYhXk5At7dAWL4NkHK9eCTg763I4Qp1bzSlGpG1Zz77T_SbZgi3uGsqowqZUUVqo73qrXFBvzYBTzX4dfO7xZG6DzWT_AeOGOKMzSwvcHFkFKE7j49o_U8aPV_g4aeNw_bvnf8nSzxG_vk0eE</recordid><startdate>20230218</startdate><enddate>20230218</enddate><creator>Fernandez-Izquierdo, Leunam</creator><creator>Spera, Enzo Luigi</creator><creator>Durán, Boris</creator><creator>Marotti, Ricardo Enrique</creator><creator>Dalchiele, Enrique Ariel</creator><creator>Del Rio, Rodrigo</creator><creator>Hevia, Samuel A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0315-6660</orcidid><orcidid>https://orcid.org/0000-0003-2141-5574</orcidid><orcidid>https://orcid.org/0000-0002-9380-7799</orcidid></search><sort><creationdate>20230218</creationdate><title>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</title><author>Fernandez-Izquierdo, Leunam ; Spera, Enzo Luigi ; Durán, Boris ; Marotti, Ricardo Enrique ; Dalchiele, Enrique Ariel ; Del Rio, Rodrigo ; Hevia, Samuel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical vapor deposition</topic><topic>Dielectric films</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Fluorine</topic><topic>Green hydrogen</topic><topic>Hematite</topic><topic>Hydrogen production</topic><topic>Irradiation</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Photoelectric effect</topic><topic>Precursors</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Structural analysis</topic><topic>Substrates</topic><topic>Thickness</topic><topic>thin film</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Izquierdo, Leunam</creatorcontrib><creatorcontrib>Spera, Enzo Luigi</creatorcontrib><creatorcontrib>Durán, Boris</creatorcontrib><creatorcontrib>Marotti, Ricardo Enrique</creatorcontrib><creatorcontrib>Dalchiele, Enrique Ariel</creatorcontrib><creatorcontrib>Del Rio, Rodrigo</creatorcontrib><creatorcontrib>Hevia, Samuel A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Izquierdo, Leunam</au><au>Spera, Enzo Luigi</au><au>Durán, Boris</au><au>Marotti, Ricardo Enrique</au><au>Dalchiele, Enrique Ariel</au><au>Del Rio, Rodrigo</au><au>Hevia, Samuel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2023-02-18</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1954</spage><pages>1954-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm was obtained for a film with a thickness of around 220 nm under solar irradiation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36838942</pmid><doi>10.3390/molecules28041954</doi><orcidid>https://orcid.org/0000-0003-0315-6660</orcidid><orcidid>https://orcid.org/0000-0003-2141-5574</orcidid><orcidid>https://orcid.org/0000-0002-9380-7799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2023-02, Vol.28 (4), p.1954
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_da8331e4c0e44cceb89cad86f29c533a
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Chemical vapor deposition
Dielectric films
Electrochemistry
Electrodes
Fluorine
Green hydrogen
Hematite
Hydrogen production
Irradiation
Morphology
Nanocrystals
Photoelectric effect
Precursors
Radiation
Scanning electron microscopy
Solar energy
Solar radiation
Spectrum analysis
Splitting
Structural analysis
Substrates
Thickness
thin film
Thin films
Tin oxides
Water splitting
title CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVD%20Growth%20of%20Hematite%20Thin%20Films%20for%20Photoelectrochemical%20Water%20Splitting:%20Effect%20of%20Precursor-Substrate%20Distance%20on%20Their%20Final%20Properties&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fernandez-Izquierdo,%20Leunam&rft.date=2023-02-18&rft.volume=28&rft.issue=4&rft.spage=1954&rft.pages=1954-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28041954&rft_dat=%3Cgale_doaj_%3EA743211621%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-9b360562b81d855b58684b36878660e34d25b72c879adb27044d41a53cd9b3743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779654706&rft_id=info:pmid/36838942&rft_galeid=A743211621&rfr_iscdi=true