Loading…
Ultracompact Polarization Splitter–Rotator Based on Shallowly Etched Subwavelength Gratings and Anisotropic Metasurfaces
Polarization splitter–rotators (PSRs) are an essential component in on-chip polarization-sensitive and polarization–division multiplexing systems. In this work, we propose an ultracompact and high-performance silicon-based polarization splitter–rotator utilizing anisotropic metasurfaces, which is th...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (19), p.3506 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polarization splitter–rotators (PSRs) are an essential component in on-chip polarization-sensitive and polarization–division multiplexing systems. In this work, we propose an ultracompact and high-performance silicon-based polarization splitter–rotator utilizing anisotropic metasurfaces, which is the first to combine the two, to our knowledge. The tilted periodic metasurface structure has different modulation effects on different polarized light fields, such as the transverse–electric (TE) mode and the transverse–magnetic (TM) mode, which are beneficial for designing polarization management devices. According to the results, the entire length of the silicon PSR was ~13.5 μm. The TE-to-TM conversion loss and polarization conversion ratio ere −0.154 dB and 96.5% at 1.55 μm, respectively. In the meanwhile, the cross talk and reflection loss were −27.0 dB and −37.3 dB, when the fundamental TE mode was input. The insertion loss and cross talk were −0.19 dB and −25.01 dB at the central wavelength when the fundamental TM mode was input. In addition, the bandwidth reached up to ~112 nm with polarization conversion loss and insertion loss higher than −0.46 dB and −0.36 dB. The simulations also show that the designed devices had good fabrication tolerance. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12193506 |