Loading…
A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network
To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and...
Saved in:
Published in: | Case studies in thermal engineering 2024-06, Vol.58, p.104444, Article 104444 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523 |
container_end_page | |
container_issue | |
container_start_page | 104444 |
container_title | Case studies in thermal engineering |
container_volume | 58 |
creator | Liu, Yunpeng Zhao, Qingxian Liu, Gang Zou, Ying Zhang, Shuqi Wang, Ke Zhao, Xiaolin |
description | To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software. |
doi_str_mv | 10.1016/j.csite.2024.104444 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X24004751</els_id><doaj_id>oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3</doaj_id><sourcerecordid>S2214157X24004751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</originalsourceid><addsrcrecordid>eNp9kU1qHDEQhZtgQ8zEJ_BGF-ix_vpvkYUZ4njA4E0C2YlSqdqjSXdrkOSYuUTOHI0nhKxcGxXv8T5KvKq6EXwtuGhv92tMPtNacqmLost8qK6kFLoWTffj4r_9Y3Wd0p5zLjrVC62vqt93LBJMdfYzsRSml-zDwmbKu-DYGCLLu0hUu2IvqVgwsZQJ3JFlmg8UIb9EYqOnybEwshxhSSU2U2SvfnF-eU7MQqLinrC4g8WnuabZknNFRUgIjthC-TXEn5-qyxGmRNd_31X1_f7Lt81D_fj0dbu5e6xRtTrXfcO7AUh3tkNJPfbCyoJpZStRoBrEaOXQW9E5JIWqt41ruIRWWN0raqRaVdsz1wXYm0P0M8SjCeDNmxDis4GYPU5kHNiGD6BsZxsN0g7NYFUHhAIkV6AKS51ZGENKkcZ_PMHNqSGzN28NmVND5txQSX0-p6h885enaBJ6WpCcj4S53OHfzf8BVmqeRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><source>ScienceDirect Journals</source><creator>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</creator><creatorcontrib>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</creatorcontrib><description>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2024.104444</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Mechanism embedding ; Proper orthogonal decomposition ; Reduced order model ; Transformers</subject><ispartof>Case studies in thermal engineering, 2024-06, Vol.58, p.104444, Article 104444</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</cites><orcidid>0000-0002-3163-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X24004751$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qingxian</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><creatorcontrib>Zhang, Shuqi</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhao, Xiaolin</creatorcontrib><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><title>Case studies in thermal engineering</title><description>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</description><subject>Deep learning</subject><subject>Mechanism embedding</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order model</subject><subject>Transformers</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1qHDEQhZtgQ8zEJ_BGF-ix_vpvkYUZ4njA4E0C2YlSqdqjSXdrkOSYuUTOHI0nhKxcGxXv8T5KvKq6EXwtuGhv92tMPtNacqmLost8qK6kFLoWTffj4r_9Y3Wd0p5zLjrVC62vqt93LBJMdfYzsRSml-zDwmbKu-DYGCLLu0hUu2IvqVgwsZQJ3JFlmg8UIb9EYqOnybEwshxhSSU2U2SvfnF-eU7MQqLinrC4g8WnuabZknNFRUgIjthC-TXEn5-qyxGmRNd_31X1_f7Lt81D_fj0dbu5e6xRtTrXfcO7AUh3tkNJPfbCyoJpZStRoBrEaOXQW9E5JIWqt41ruIRWWN0raqRaVdsz1wXYm0P0M8SjCeDNmxDis4GYPU5kHNiGD6BsZxsN0g7NYFUHhAIkV6AKS51ZGENKkcZ_PMHNqSGzN28NmVND5txQSX0-p6h885enaBJ6WpCcj4S53OHfzf8BVmqeRg</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Liu, Yunpeng</creator><creator>Zhao, Qingxian</creator><creator>Liu, Gang</creator><creator>Zou, Ying</creator><creator>Zhang, Shuqi</creator><creator>Wang, Ke</creator><creator>Zhao, Xiaolin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3163-3244</orcidid></search><sort><creationdate>202406</creationdate><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><author>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Mechanism embedding</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order model</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qingxian</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><creatorcontrib>Zhang, Shuqi</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhao, Xiaolin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunpeng</au><au>Zhao, Qingxian</au><au>Liu, Gang</au><au>Zou, Ying</au><au>Zhang, Shuqi</au><au>Wang, Ke</au><au>Zhao, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2024-06</date><risdate>2024</risdate><volume>58</volume><spage>104444</spage><pages>104444-</pages><artnum>104444</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2024.104444</doi><orcidid>https://orcid.org/0000-0002-3163-3244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-157X |
ispartof | Case studies in thermal engineering, 2024-06, Vol.58, p.104444, Article 104444 |
issn | 2214-157X 2214-157X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3 |
source | ScienceDirect Journals |
subjects | Deep learning Mechanism embedding Proper orthogonal decomposition Reduced order model Transformers |
title | A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real-time%20solution%20method%20for%20three-dimensional%20steady%20temperature%20field%20of%20transformer%20windings%20based%20on%20mechanism-embedded%20cascade%20network&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Liu,%20Yunpeng&rft.date=2024-06&rft.volume=58&rft.spage=104444&rft.pages=104444-&rft.artnum=104444&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2024.104444&rft_dat=%3Celsevier_doaj_%3ES2214157X24004751%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |