Loading…

A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network

To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2024-06, Vol.58, p.104444, Article 104444
Main Authors: Liu, Yunpeng, Zhao, Qingxian, Liu, Gang, Zou, Ying, Zhang, Shuqi, Wang, Ke, Zhao, Xiaolin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523
container_end_page
container_issue
container_start_page 104444
container_title Case studies in thermal engineering
container_volume 58
creator Liu, Yunpeng
Zhao, Qingxian
Liu, Gang
Zou, Ying
Zhang, Shuqi
Wang, Ke
Zhao, Xiaolin
description To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.
doi_str_mv 10.1016/j.csite.2024.104444
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X24004751</els_id><doaj_id>oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3</doaj_id><sourcerecordid>S2214157X24004751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</originalsourceid><addsrcrecordid>eNp9kU1qHDEQhZtgQ8zEJ_BGF-ix_vpvkYUZ4njA4E0C2YlSqdqjSXdrkOSYuUTOHI0nhKxcGxXv8T5KvKq6EXwtuGhv92tMPtNacqmLost8qK6kFLoWTffj4r_9Y3Wd0p5zLjrVC62vqt93LBJMdfYzsRSml-zDwmbKu-DYGCLLu0hUu2IvqVgwsZQJ3JFlmg8UIb9EYqOnybEwshxhSSU2U2SvfnF-eU7MQqLinrC4g8WnuabZknNFRUgIjthC-TXEn5-qyxGmRNd_31X1_f7Lt81D_fj0dbu5e6xRtTrXfcO7AUh3tkNJPfbCyoJpZStRoBrEaOXQW9E5JIWqt41ruIRWWN0raqRaVdsz1wXYm0P0M8SjCeDNmxDis4GYPU5kHNiGD6BsZxsN0g7NYFUHhAIkV6AKS51ZGENKkcZ_PMHNqSGzN28NmVND5txQSX0-p6h885enaBJ6WpCcj4S53OHfzf8BVmqeRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><source>ScienceDirect Journals</source><creator>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</creator><creatorcontrib>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</creatorcontrib><description>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2024.104444</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Mechanism embedding ; Proper orthogonal decomposition ; Reduced order model ; Transformers</subject><ispartof>Case studies in thermal engineering, 2024-06, Vol.58, p.104444, Article 104444</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</cites><orcidid>0000-0002-3163-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X24004751$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qingxian</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><creatorcontrib>Zhang, Shuqi</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhao, Xiaolin</creatorcontrib><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><title>Case studies in thermal engineering</title><description>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</description><subject>Deep learning</subject><subject>Mechanism embedding</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order model</subject><subject>Transformers</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1qHDEQhZtgQ8zEJ_BGF-ix_vpvkYUZ4njA4E0C2YlSqdqjSXdrkOSYuUTOHI0nhKxcGxXv8T5KvKq6EXwtuGhv92tMPtNacqmLost8qK6kFLoWTffj4r_9Y3Wd0p5zLjrVC62vqt93LBJMdfYzsRSml-zDwmbKu-DYGCLLu0hUu2IvqVgwsZQJ3JFlmg8UIb9EYqOnybEwshxhSSU2U2SvfnF-eU7MQqLinrC4g8WnuabZknNFRUgIjthC-TXEn5-qyxGmRNd_31X1_f7Lt81D_fj0dbu5e6xRtTrXfcO7AUh3tkNJPfbCyoJpZStRoBrEaOXQW9E5JIWqt41ruIRWWN0raqRaVdsz1wXYm0P0M8SjCeDNmxDis4GYPU5kHNiGD6BsZxsN0g7NYFUHhAIkV6AKS51ZGENKkcZ_PMHNqSGzN28NmVND5txQSX0-p6h885enaBJ6WpCcj4S53OHfzf8BVmqeRg</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Liu, Yunpeng</creator><creator>Zhao, Qingxian</creator><creator>Liu, Gang</creator><creator>Zou, Ying</creator><creator>Zhang, Shuqi</creator><creator>Wang, Ke</creator><creator>Zhao, Xiaolin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3163-3244</orcidid></search><sort><creationdate>202406</creationdate><title>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</title><author>Liu, Yunpeng ; Zhao, Qingxian ; Liu, Gang ; Zou, Ying ; Zhang, Shuqi ; Wang, Ke ; Zhao, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Mechanism embedding</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order model</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Zhao, Qingxian</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><creatorcontrib>Zhang, Shuqi</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Zhao, Xiaolin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunpeng</au><au>Zhao, Qingxian</au><au>Liu, Gang</au><au>Zou, Ying</au><au>Zhang, Shuqi</au><au>Wang, Ke</au><au>Zhao, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2024-06</date><risdate>2024</risdate><volume>58</volume><spage>104444</spage><pages>104444-</pages><artnum>104444</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>To enhance the computation efficiency and accuracy of three-dimensional steady temperature field of transformer windings, we propose a new non-invasive Reduced Order Model (ROM) based on a mechanism-embedded cascade network. Initially, a snapshot matrix is formed from the Full Order Model (FOM) and then combined with Proper Orthogonal Decomposition (POD) to extract key modal features that characterize the temperature field. Subsequently, a cascade network architecture, integrating Multilayer Perceptron (MLP) and Radial Basis Function Neural Network (RBFNN), is devised to swiftly map working condition parameters to modal coefficients. Additionally, the cascade network is embedded with condition sensitivity and modal contribution mechanisms to further enhance prediction accuracy. Finally, by linearly weighting the modes with predicted modal coefficients, a rapid reconstruction of the steady temperature field in transformer windings is achieved. Validation against Fluent software simulations and experimental measurements demonstrate a close agreement, with computational errors of less than 4K and an impressive single solution time of only 0.0087 s, which is 48760 times faster compared to Fluent software.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2024.104444</doi><orcidid>https://orcid.org/0000-0002-3163-3244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2024-06, Vol.58, p.104444, Article 104444
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dab509a3b7b54a2b959b37aec1a203a3
source ScienceDirect Journals
subjects Deep learning
Mechanism embedding
Proper orthogonal decomposition
Reduced order model
Transformers
title A real-time solution method for three-dimensional steady temperature field of transformer windings based on mechanism-embedded cascade network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real-time%20solution%20method%20for%20three-dimensional%20steady%20temperature%20field%20of%20transformer%20windings%20based%20on%20mechanism-embedded%20cascade%20network&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Liu,%20Yunpeng&rft.date=2024-06&rft.volume=58&rft.spage=104444&rft.pages=104444-&rft.artnum=104444&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2024.104444&rft_dat=%3Celsevier_doaj_%3ES2214157X24004751%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-85079ae47b7c2e8c81b2cad6262c1c391fb298b17dce3c38b5d502a61b483e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true