Loading…
PE and PET oligomers’ interplay with membrane bilayers
The prevalence of microplastic pollution in nature and foodstuffs is fairly well identified. However, studies of micro- or nanoplastics’ cell membrane permeation and health effects in humans are lacking. Our study focuses on examining the interactions of polyethylene (PE) and polyethylene terephthal...
Saved in:
Published in: | Scientific reports 2022-02, Vol.12 (1), p.2234-8, Article 2234 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prevalence of microplastic pollution in nature and foodstuffs is fairly well identified. However, studies of micro- or nanoplastics’ cell membrane permeation and health effects in humans are lacking. Our study focuses on examining the interactions of polyethylene (PE) and polyethylene terephthalate (PET) with bilayer membranes. We have performed molecular dynamics simulations to study how plastic oligomers behave in bilayers. In addition, we have studied membrane permeation of PE and Bis(2-hydroxyethyl) terephthalate (BHET), a type of PET monomer, with Parallel Artificial Membrane Permeability Assay (PAMPA). As a result, in simulations the molecules exhibited different movements and preferred locations in membrane. PAMPA studies suggested similar preferences in membrane, especially for PE plastic. Our results suggest that passive diffusion could be an important transport mechanism into cells for some small plastic oligomers. Both molecular dynamics simulations and PAMPA have potential for micro- and nanoplastics research. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-06217-4 |