Loading…

Arylsulfatase A Remodeling during Human Sperm In Vitro Capacitation Using Field Emission Scanning Electron Microscopy (FE-SEM)

Capacitation drives sperm biophysical and biochemical changes for sperm-oocyte interactions. It is a well-known fact that the molecular complex arylsulfatase A (ARSA), hyaluronidase sperm adhesion molecule 1 (SPAM1), and heat shock protein 2 (HSPA2) plays a significant role in sperm-zona pellucida (...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2021-01, Vol.10 (2), p.222
Main Authors: Gómez-Torres, María José, Huerta-Retamal, Natalia, Robles-Gómez, Laura, Sáez-Espinosa, Paula, Aizpurua, Jon, Avilés, Manuel, Romero, Alejandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capacitation drives sperm biophysical and biochemical changes for sperm-oocyte interactions. It is a well-known fact that the molecular complex arylsulfatase A (ARSA), hyaluronidase sperm adhesion molecule 1 (SPAM1), and heat shock protein 2 (HSPA2) plays a significant role in sperm-zona pellucida (ZP) binding. However, the time-dependent capacitation effects on the sperm surface ARSA presence and specific topographic distributions remain to be elucidated. Here, we quantified the ARSA density and specific membrane domain locations before (US) and after in vitro capacitation (one and four hours; CS1-CS4) in human sperm using high-resolution field emission scanning electron microscopy (FE-SEM) and immunogold labeling. Our results showed a significant and progressive capacitation-mediated increase of labeled spermatozoa from the US (37%) to CS4 (100%) physiological conditions. In addition, surface mapping revealed a close relationship between the ARSA residues and their acrosomal repositioning. Compared with the ARSA surface heterogeneous distribution found in US, the CS1-4 conditions exhibited clustering on the peri-acrosomal region, showing that time-dependent capacitation also induced a ARSA residue dramatic translocation on sperm surfaces. Our findings provide novel insights into the molecular remodeling events preceding sperm-oocyte interactions.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells10020222