Loading…
Cellular localization of ROS and NO in olive reproductive tissues during flower development
Background: Recent studies have shown that reactive oxygen species (ROS) and nitric oxide (NO) are involved in the signalling processes taking place during the interactions pollen-pistil in several plants. The olive tree (Olea europaea L.) is an important crop in Mediterranean countries. It is a dic...
Saved in:
Published in: | BMC plant biology 2010-02, Vol.10 (1), p.36-36, Article 36 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Recent studies have shown that reactive oxygen species (ROS) and nitric oxide (NO) are involved in the signalling processes taking place during the interactions pollen-pistil in several plants. The olive tree (Olea europaea L.) is an important crop in Mediterranean countries. It is a dicotyledonous species, with a certain level of self-incompatibility, fertilisation preferentially allogamous, and with an incompatibility system of the gametophytic type not well determined yet. The purpose of the present study was to determine whether relevant ROS and NO are present in the stigmatic surface and other reproductive tissues in the olive over different key developmental stages of the reproductive process. This is a first approach to find out the putative function of these signalling molecules in the regulation of the interaction pollen-stigma. Results: The presence of ROS and NO was analyzed in the olive floral organs throughout five developmental stages by using histochemical analysis at light microscopy, as well as different fluorochromes, ROS and NO scavengers and a NO donor by confocal laser scanning microscopy. The "green bud" stage and the period including the end of the "recently opened flower" and the "dehiscent anther" stages displayed higher concentrations of the mentioned chemical species. The stigmatic surface (particularly the papillae and the stigma exudate), the anther tissues and the pollen grains and pollen tubes were the tissues accumulating most ROS and NO. The mature pollen grains emitted NO through the apertural regions and the pollen tubes. In contrast, none of these species were detected in the style or the ovary. Conclusion: The results obtained clearly demonstrate that both ROS and NO are produced in the olive reproductive organs in a stage- and tissue- specific manner. The biological significance of the presence of these products may differ between early flowering stages (defence functions) and stages where there is an intense interaction between pollen and pistil which may determine the presence of a receptive phase in the stigma. The study confirms the enhanced production of NO by pollen grains and tubes during the receptive phase, and the decrease in the presence of ROS when NO is actively produced. |
---|---|
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/1471-2229-10-36 |