Loading…

Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen

Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of froz...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-11, Vol.11 (22), p.10834
Main Authors: Yoon, Seok, Le, Dinh-Viet, Go, Gyu-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593
cites cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593
container_end_page
container_issue 22
container_start_page 10834
container_title Applied sciences
container_volume 11
creator Yoon, Seok
Le, Dinh-Viet
Go, Gyu-Hyun
description Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.
doi_str_mv 10.3390/app112210834
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c</doaj_id><sourcerecordid>2602008750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoNIbH2CJKwG_EsfHtqK0UnlIhbO1cdbgEurgpEX9e0KLEHuZ1Wg0-5gkuWD0WghNb6BpGOOc0ULIo-SMU5WnQjJ1_K8_TYZtu6J9aSYKRs8SO4qdd956qMkDbuIeuq8Q39MxtFiR-1BhTVyI5Cli5W3nw5oER6YxtB2ZIWyRjPENtr6X9PzS192OLIOvybJB6z9wfZ6cOKhbHP7iIHmZ3j5PZuni8W4-GS1SK3LVpdyikqUFZXPNlROi0ICMK60rEEUu0KLIRM5K6TKgIKkutCqdooxL5TItBsn84FsFWJkm-g-IOxPAmz0R4quB_lpbo6nAydI5xZmqZIEWHGRKlJUtQWsmbe91efBqYvjcYNuZVdjEdb--4TnllBYqo73q6qCy_TfaiO5vKqPmJxXzPxXxDbZ4fu0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602008750</pqid></control><display><type>article</type><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><source>Publicly Available Content Database</source><creator>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</creator><creatorcontrib>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</creatorcontrib><description>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112210834</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Datasets ; Energy conservation ; Equilibrium ; finite element method ; Frost ; frost heave ; Frost heaving ; Frozen ground ; Geotechnical engineering ; Heat ; hydraulic conductivity ; Hydraulics ; Neural networks ; Parameter sensitivity ; particle thermal conductivity ; Permafrost ; Sensitivity analysis ; Shear strength ; Soil mechanics ; Statistical analysis ; Thermal conductivity ; thermal-hydro-mechanical model</subject><ispartof>Applied sciences, 2021-11, Vol.11 (22), p.10834</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</citedby><cites>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602008750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602008750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Yoon, Seok</creatorcontrib><creatorcontrib>Le, Dinh-Viet</creatorcontrib><creatorcontrib>Go, Gyu-Hyun</creatorcontrib><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><title>Applied sciences</title><description>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</description><subject>Datasets</subject><subject>Energy conservation</subject><subject>Equilibrium</subject><subject>finite element method</subject><subject>Frost</subject><subject>frost heave</subject><subject>Frost heaving</subject><subject>Frozen ground</subject><subject>Geotechnical engineering</subject><subject>Heat</subject><subject>hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><subject>particle thermal conductivity</subject><subject>Permafrost</subject><subject>Sensitivity analysis</subject><subject>Shear strength</subject><subject>Soil mechanics</subject><subject>Statistical analysis</subject><subject>Thermal conductivity</subject><subject>thermal-hydro-mechanical model</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoNIbH2CJKwG_EsfHtqK0UnlIhbO1cdbgEurgpEX9e0KLEHuZ1Wg0-5gkuWD0WghNb6BpGOOc0ULIo-SMU5WnQjJ1_K8_TYZtu6J9aSYKRs8SO4qdd956qMkDbuIeuq8Q39MxtFiR-1BhTVyI5Cli5W3nw5oER6YxtB2ZIWyRjPENtr6X9PzS192OLIOvybJB6z9wfZ6cOKhbHP7iIHmZ3j5PZuni8W4-GS1SK3LVpdyikqUFZXPNlROi0ICMK60rEEUu0KLIRM5K6TKgIKkutCqdooxL5TItBsn84FsFWJkm-g-IOxPAmz0R4quB_lpbo6nAydI5xZmqZIEWHGRKlJUtQWsmbe91efBqYvjcYNuZVdjEdb--4TnllBYqo73q6qCy_TfaiO5vKqPmJxXzPxXxDbZ4fu0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Yoon, Seok</creator><creator>Le, Dinh-Viet</creator><creator>Go, Gyu-Hyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20211101</creationdate><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><author>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Datasets</topic><topic>Energy conservation</topic><topic>Equilibrium</topic><topic>finite element method</topic><topic>Frost</topic><topic>frost heave</topic><topic>Frost heaving</topic><topic>Frozen ground</topic><topic>Geotechnical engineering</topic><topic>Heat</topic><topic>hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><topic>particle thermal conductivity</topic><topic>Permafrost</topic><topic>Sensitivity analysis</topic><topic>Shear strength</topic><topic>Soil mechanics</topic><topic>Statistical analysis</topic><topic>Thermal conductivity</topic><topic>thermal-hydro-mechanical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Seok</creatorcontrib><creatorcontrib>Le, Dinh-Viet</creatorcontrib><creatorcontrib>Go, Gyu-Hyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Seok</au><au>Le, Dinh-Viet</au><au>Go, Gyu-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</atitle><jtitle>Applied sciences</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>22</issue><spage>10834</spage><pages>10834-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112210834</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-11, Vol.11 (22), p.10834
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c
source Publicly Available Content Database
subjects Datasets
Energy conservation
Equilibrium
finite element method
Frost
frost heave
Frost heaving
Frozen ground
Geotechnical engineering
Heat
hydraulic conductivity
Hydraulics
Neural networks
Parameter sensitivity
particle thermal conductivity
Permafrost
Sensitivity analysis
Shear strength
Soil mechanics
Statistical analysis
Thermal conductivity
thermal-hydro-mechanical model
title Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network-Based%20Model%20for%20Prediction%20of%20Frost%20Heave%20Behavior%20of%20Silty%20Soil%20Specimen&rft.jtitle=Applied%20sciences&rft.au=Yoon,%20Seok&rft.date=2021-11-01&rft.volume=11&rft.issue=22&rft.spage=10834&rft.pages=10834-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112210834&rft_dat=%3Cproquest_doaj_%3E2602008750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602008750&rft_id=info:pmid/&rfr_iscdi=true