Loading…
Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen
Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of froz...
Saved in:
Published in: | Applied sciences 2021-11, Vol.11 (22), p.10834 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593 |
container_end_page | |
container_issue | 22 |
container_start_page | 10834 |
container_title | Applied sciences |
container_volume | 11 |
creator | Yoon, Seok Le, Dinh-Viet Go, Gyu-Hyun |
description | Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets. |
doi_str_mv | 10.3390/app112210834 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c</doaj_id><sourcerecordid>2602008750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoNIbH2CJKwG_EsfHtqK0UnlIhbO1cdbgEurgpEX9e0KLEHuZ1Wg0-5gkuWD0WghNb6BpGOOc0ULIo-SMU5WnQjJ1_K8_TYZtu6J9aSYKRs8SO4qdd956qMkDbuIeuq8Q39MxtFiR-1BhTVyI5Cli5W3nw5oER6YxtB2ZIWyRjPENtr6X9PzS192OLIOvybJB6z9wfZ6cOKhbHP7iIHmZ3j5PZuni8W4-GS1SK3LVpdyikqUFZXPNlROi0ICMK60rEEUu0KLIRM5K6TKgIKkutCqdooxL5TItBsn84FsFWJkm-g-IOxPAmz0R4quB_lpbo6nAydI5xZmqZIEWHGRKlJUtQWsmbe91efBqYvjcYNuZVdjEdb--4TnllBYqo73q6qCy_TfaiO5vKqPmJxXzPxXxDbZ4fu0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602008750</pqid></control><display><type>article</type><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><source>Publicly Available Content Database</source><creator>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</creator><creatorcontrib>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</creatorcontrib><description>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app112210834</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Datasets ; Energy conservation ; Equilibrium ; finite element method ; Frost ; frost heave ; Frost heaving ; Frozen ground ; Geotechnical engineering ; Heat ; hydraulic conductivity ; Hydraulics ; Neural networks ; Parameter sensitivity ; particle thermal conductivity ; Permafrost ; Sensitivity analysis ; Shear strength ; Soil mechanics ; Statistical analysis ; Thermal conductivity ; thermal-hydro-mechanical model</subject><ispartof>Applied sciences, 2021-11, Vol.11 (22), p.10834</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</citedby><cites>FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602008750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602008750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Yoon, Seok</creatorcontrib><creatorcontrib>Le, Dinh-Viet</creatorcontrib><creatorcontrib>Go, Gyu-Hyun</creatorcontrib><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><title>Applied sciences</title><description>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</description><subject>Datasets</subject><subject>Energy conservation</subject><subject>Equilibrium</subject><subject>finite element method</subject><subject>Frost</subject><subject>frost heave</subject><subject>Frost heaving</subject><subject>Frozen ground</subject><subject>Geotechnical engineering</subject><subject>Heat</subject><subject>hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><subject>particle thermal conductivity</subject><subject>Permafrost</subject><subject>Sensitivity analysis</subject><subject>Shear strength</subject><subject>Soil mechanics</subject><subject>Statistical analysis</subject><subject>Thermal conductivity</subject><subject>thermal-hydro-mechanical model</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoNIbH2CJKwG_EsfHtqK0UnlIhbO1cdbgEurgpEX9e0KLEHuZ1Wg0-5gkuWD0WghNb6BpGOOc0ULIo-SMU5WnQjJ1_K8_TYZtu6J9aSYKRs8SO4qdd956qMkDbuIeuq8Q39MxtFiR-1BhTVyI5Cli5W3nw5oER6YxtB2ZIWyRjPENtr6X9PzS192OLIOvybJB6z9wfZ6cOKhbHP7iIHmZ3j5PZuni8W4-GS1SK3LVpdyikqUFZXPNlROi0ICMK60rEEUu0KLIRM5K6TKgIKkutCqdooxL5TItBsn84FsFWJkm-g-IOxPAmz0R4quB_lpbo6nAydI5xZmqZIEWHGRKlJUtQWsmbe91efBqYvjcYNuZVdjEdb--4TnllBYqo73q6qCy_TfaiO5vKqPmJxXzPxXxDbZ4fu0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Yoon, Seok</creator><creator>Le, Dinh-Viet</creator><creator>Go, Gyu-Hyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20211101</creationdate><title>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</title><author>Yoon, Seok ; Le, Dinh-Viet ; Go, Gyu-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Datasets</topic><topic>Energy conservation</topic><topic>Equilibrium</topic><topic>finite element method</topic><topic>Frost</topic><topic>frost heave</topic><topic>Frost heaving</topic><topic>Frozen ground</topic><topic>Geotechnical engineering</topic><topic>Heat</topic><topic>hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><topic>particle thermal conductivity</topic><topic>Permafrost</topic><topic>Sensitivity analysis</topic><topic>Shear strength</topic><topic>Soil mechanics</topic><topic>Statistical analysis</topic><topic>Thermal conductivity</topic><topic>thermal-hydro-mechanical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Seok</creatorcontrib><creatorcontrib>Le, Dinh-Viet</creatorcontrib><creatorcontrib>Go, Gyu-Hyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Seok</au><au>Le, Dinh-Viet</au><au>Go, Gyu-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen</atitle><jtitle>Applied sciences</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>22</issue><spage>10834</spage><pages>10834-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Frost heave action is a major issue in permafrost regions that can give rise to various geotechnical engineering problems. To analyze and predict this phenomenon at a specimen scale, this study conducted a fully coupled thermal-hydro-mechanical analysis and evaluated the frost heave behavior of frozen soil considering geotechnical parameters. Furthermore, a parametric study was performed to quantitatively analyze the effects of major geotechnical properties on frost heave behavior. According to the results of the parametric study, the amount of heave tended to decrease as the particle thermal conductivity increased, whereas the frost heave ratio tended to increase as the initial hydraulic conductivity increased. After evaluating the sensitivity of each parameter to frost heave behavior through statistical analyses, an artificial neural network model was developed to practically predict frost heave behavior. According to the verification results of the neural network model, the trained network model demonstrated a reliable accuracy (R2 = 0.893) in predicting frost heave ratio, even when the model used test datasets that were not part of the training datasets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app112210834</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2021-11, Vol.11 (22), p.10834 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_daf4bff7217d48ecafa573bdcba9914c |
source | Publicly Available Content Database |
subjects | Datasets Energy conservation Equilibrium finite element method Frost frost heave Frost heaving Frozen ground Geotechnical engineering Heat hydraulic conductivity Hydraulics Neural networks Parameter sensitivity particle thermal conductivity Permafrost Sensitivity analysis Shear strength Soil mechanics Statistical analysis Thermal conductivity thermal-hydro-mechanical model |
title | Artificial Neural Network-Based Model for Prediction of Frost Heave Behavior of Silty Soil Specimen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network-Based%20Model%20for%20Prediction%20of%20Frost%20Heave%20Behavior%20of%20Silty%20Soil%20Specimen&rft.jtitle=Applied%20sciences&rft.au=Yoon,%20Seok&rft.date=2021-11-01&rft.volume=11&rft.issue=22&rft.spage=10834&rft.pages=10834-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app112210834&rft_dat=%3Cproquest_doaj_%3E2602008750%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-2ce74bca7c6927f3389ae12799da3863ece35361b4f5a0a409897bf701247f593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602008750&rft_id=info:pmid/&rfr_iscdi=true |