Loading…
Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications
Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-all...
Saved in:
Published in: | Metals (Basel ) 2021-07, Vol.11 (7), p.1002 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93 |
container_end_page | |
container_issue | 7 |
container_start_page | 1002 |
container_title | Metals (Basel ) |
container_volume | 11 |
creator | Jaquez-Muñoz, Jesus Gaona-Tiburcio, Citlalli Lira-Martinez, Alejandro Zambrano-Robledo, Patricia Maldonado-Bandala, Erick Samaniego-Gamez, Oliver Nieves-Mendoza, Demetrio Olguin-Coca, Javier Estupiñan-Lopez, Francisco Almeraya-Calderon, Facundo |
description | Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions. |
doi_str_mv | 10.3390/met11071002 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559</doaj_id><sourcerecordid>2554610547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</originalsourceid><addsrcrecordid>eNpNkU1LJDEQhpvFhRX1tH8gsMe1Nd_pHJvBjwHFAV0PXkJ1JhkytJ02SR_m39vjrGJd6qUonvp4q-o3wReMaXz56gohWBGM6Y_qmGIlaq4wOfqmf1VnOW_xHA2VWOvjanqcsnVjCV3oQ9mhEtEqlBKGDVrElGIOcUDRo6dQL1b0fJ9l29f0caj5S6rpfTxHMKw_6_wZtX0fdxn5mFDrUhxgKsFCj9px7GdRZmA-rX566LM7-59Pqn_XV0-L2_ru4Wa5aO9qyyQvtQPmvO1UpzkDkEID0aRr9HymxVRQ3AnqvOdKOCadAtVJLVVDHXaMWtDspFoeuOsIWzOm8AppZyIE81GIaWMgzev1zqzBN523zKq14uABlGx4R7mSXlgh9qw_B9aY4tvkcjHbOKVhXt9QIbgkWHA1d_09dNn5dzk5_zWVYLO3yXyzib0Dir2CxA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554610547</pqid></control><display><type>article</type><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</creator><creatorcontrib>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</creatorcontrib><description>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11071002</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aeronautics ; Aerospace industry ; Aircraft ; Biomedical materials ; corrosion ; Corrosion fatigue ; Corrosion potential ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Damage tolerance ; Electrochemical noise ; Electrode polarization ; Electrolytes ; Exposure ; Hydrogen ; Noise ; Pitting (corrosion) ; potentiodynamic polarization ; Power spectral density ; PSD ; Room temperature ; Sodium chloride ; Sulfuric acid ; titanium ; Titanium alloys ; Titanium base alloys ; Tolerances</subject><ispartof>Metals (Basel ), 2021-07, Vol.11 (7), p.1002</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</citedby><cites>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</cites><orcidid>0000-0002-3014-2814 ; 0000-0001-9072-3090 ; 0000-0002-9491-0069 ; 0000-0003-0930-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554610547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554610547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jaquez-Muñoz, Jesus</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><creatorcontrib>Lira-Martinez, Alejandro</creatorcontrib><creatorcontrib>Zambrano-Robledo, Patricia</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Samaniego-Gamez, Oliver</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Olguin-Coca, Javier</creatorcontrib><creatorcontrib>Estupiñan-Lopez, Francisco</creatorcontrib><creatorcontrib>Almeraya-Calderon, Facundo</creatorcontrib><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><title>Metals (Basel )</title><description>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</description><subject>Aeronautics</subject><subject>Aerospace industry</subject><subject>Aircraft</subject><subject>Biomedical materials</subject><subject>corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Damage tolerance</subject><subject>Electrochemical noise</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Exposure</subject><subject>Hydrogen</subject><subject>Noise</subject><subject>Pitting (corrosion)</subject><subject>potentiodynamic polarization</subject><subject>Power spectral density</subject><subject>PSD</subject><subject>Room temperature</subject><subject>Sodium chloride</subject><subject>Sulfuric acid</subject><subject>titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Tolerances</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LJDEQhpvFhRX1tH8gsMe1Nd_pHJvBjwHFAV0PXkJ1JhkytJ02SR_m39vjrGJd6qUonvp4q-o3wReMaXz56gohWBGM6Y_qmGIlaq4wOfqmf1VnOW_xHA2VWOvjanqcsnVjCV3oQ9mhEtEqlBKGDVrElGIOcUDRo6dQL1b0fJ9l29f0caj5S6rpfTxHMKw_6_wZtX0fdxn5mFDrUhxgKsFCj9px7GdRZmA-rX566LM7-59Pqn_XV0-L2_ru4Wa5aO9qyyQvtQPmvO1UpzkDkEID0aRr9HymxVRQ3AnqvOdKOCadAtVJLVVDHXaMWtDspFoeuOsIWzOm8AppZyIE81GIaWMgzev1zqzBN523zKq14uABlGx4R7mSXlgh9qw_B9aY4tvkcjHbOKVhXt9QIbgkWHA1d_09dNn5dzk5_zWVYLO3yXyzib0Dir2CxA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Jaquez-Muñoz, Jesus</creator><creator>Gaona-Tiburcio, Citlalli</creator><creator>Lira-Martinez, Alejandro</creator><creator>Zambrano-Robledo, Patricia</creator><creator>Maldonado-Bandala, Erick</creator><creator>Samaniego-Gamez, Oliver</creator><creator>Nieves-Mendoza, Demetrio</creator><creator>Olguin-Coca, Javier</creator><creator>Estupiñan-Lopez, Francisco</creator><creator>Almeraya-Calderon, Facundo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0002-9491-0069</orcidid><orcidid>https://orcid.org/0000-0003-0930-8135</orcidid></search><sort><creationdate>20210701</creationdate><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><author>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aeronautics</topic><topic>Aerospace industry</topic><topic>Aircraft</topic><topic>Biomedical materials</topic><topic>corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Damage tolerance</topic><topic>Electrochemical noise</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Exposure</topic><topic>Hydrogen</topic><topic>Noise</topic><topic>Pitting (corrosion)</topic><topic>potentiodynamic polarization</topic><topic>Power spectral density</topic><topic>PSD</topic><topic>Room temperature</topic><topic>Sodium chloride</topic><topic>Sulfuric acid</topic><topic>titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaquez-Muñoz, Jesus</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><creatorcontrib>Lira-Martinez, Alejandro</creatorcontrib><creatorcontrib>Zambrano-Robledo, Patricia</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Samaniego-Gamez, Oliver</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Olguin-Coca, Javier</creatorcontrib><creatorcontrib>Estupiñan-Lopez, Francisco</creatorcontrib><creatorcontrib>Almeraya-Calderon, Facundo</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaquez-Muñoz, Jesus</au><au>Gaona-Tiburcio, Citlalli</au><au>Lira-Martinez, Alejandro</au><au>Zambrano-Robledo, Patricia</au><au>Maldonado-Bandala, Erick</au><au>Samaniego-Gamez, Oliver</au><au>Nieves-Mendoza, Demetrio</au><au>Olguin-Coca, Javier</au><au>Estupiñan-Lopez, Francisco</au><au>Almeraya-Calderon, Facundo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</atitle><jtitle>Metals (Basel )</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>7</issue><spage>1002</spage><pages>1002-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11071002</doi><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0002-9491-0069</orcidid><orcidid>https://orcid.org/0000-0003-0930-8135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2021-07, Vol.11 (7), p.1002 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Aeronautics Aerospace industry Aircraft Biomedical materials corrosion Corrosion fatigue Corrosion potential Corrosion rate Corrosion resistance Corrosion resistant alloys Damage tolerance Electrochemical noise Electrode polarization Electrolytes Exposure Hydrogen Noise Pitting (corrosion) potentiodynamic polarization Power spectral density PSD Room temperature Sodium chloride Sulfuric acid titanium Titanium alloys Titanium base alloys Tolerances |
title | Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Susceptibility%20to%20Pitting%20Corrosion%20of%20Ti-CP2,%20Ti-6Al-2Sn-4Zr-2Mo,%20and%20Ti-6Al-4V%20Alloys%20for%20Aeronautical%20Applications&rft.jtitle=Metals%20(Basel%20)&rft.au=Jaquez-Mu%C3%B1oz,%20Jesus&rft.date=2021-07-01&rft.volume=11&rft.issue=7&rft.spage=1002&rft.pages=1002-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11071002&rft_dat=%3Cproquest_doaj_%3E2554610547%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554610547&rft_id=info:pmid/&rfr_iscdi=true |