Loading…

Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications

Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-all...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-07, Vol.11 (7), p.1002
Main Authors: Jaquez-Muñoz, Jesus, Gaona-Tiburcio, Citlalli, Lira-Martinez, Alejandro, Zambrano-Robledo, Patricia, Maldonado-Bandala, Erick, Samaniego-Gamez, Oliver, Nieves-Mendoza, Demetrio, Olguin-Coca, Javier, Estupiñan-Lopez, Francisco, Almeraya-Calderon, Facundo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93
cites cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93
container_end_page
container_issue 7
container_start_page 1002
container_title Metals (Basel )
container_volume 11
creator Jaquez-Muñoz, Jesus
Gaona-Tiburcio, Citlalli
Lira-Martinez, Alejandro
Zambrano-Robledo, Patricia
Maldonado-Bandala, Erick
Samaniego-Gamez, Oliver
Nieves-Mendoza, Demetrio
Olguin-Coca, Javier
Estupiñan-Lopez, Francisco
Almeraya-Calderon, Facundo
description Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.
doi_str_mv 10.3390/met11071002
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559</doaj_id><sourcerecordid>2554610547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</originalsourceid><addsrcrecordid>eNpNkU1LJDEQhpvFhRX1tH8gsMe1Nd_pHJvBjwHFAV0PXkJ1JhkytJ02SR_m39vjrGJd6qUonvp4q-o3wReMaXz56gohWBGM6Y_qmGIlaq4wOfqmf1VnOW_xHA2VWOvjanqcsnVjCV3oQ9mhEtEqlBKGDVrElGIOcUDRo6dQL1b0fJ9l29f0caj5S6rpfTxHMKw_6_wZtX0fdxn5mFDrUhxgKsFCj9px7GdRZmA-rX566LM7-59Pqn_XV0-L2_ru4Wa5aO9qyyQvtQPmvO1UpzkDkEID0aRr9HymxVRQ3AnqvOdKOCadAtVJLVVDHXaMWtDspFoeuOsIWzOm8AppZyIE81GIaWMgzev1zqzBN523zKq14uABlGx4R7mSXlgh9qw_B9aY4tvkcjHbOKVhXt9QIbgkWHA1d_09dNn5dzk5_zWVYLO3yXyzib0Dir2CxA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554610547</pqid></control><display><type>article</type><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</creator><creatorcontrib>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</creatorcontrib><description>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11071002</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aeronautics ; Aerospace industry ; Aircraft ; Biomedical materials ; corrosion ; Corrosion fatigue ; Corrosion potential ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Damage tolerance ; Electrochemical noise ; Electrode polarization ; Electrolytes ; Exposure ; Hydrogen ; Noise ; Pitting (corrosion) ; potentiodynamic polarization ; Power spectral density ; PSD ; Room temperature ; Sodium chloride ; Sulfuric acid ; titanium ; Titanium alloys ; Titanium base alloys ; Tolerances</subject><ispartof>Metals (Basel ), 2021-07, Vol.11 (7), p.1002</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</citedby><cites>FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</cites><orcidid>0000-0002-3014-2814 ; 0000-0001-9072-3090 ; 0000-0002-9491-0069 ; 0000-0003-0930-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554610547/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554610547?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jaquez-Muñoz, Jesus</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><creatorcontrib>Lira-Martinez, Alejandro</creatorcontrib><creatorcontrib>Zambrano-Robledo, Patricia</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Samaniego-Gamez, Oliver</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Olguin-Coca, Javier</creatorcontrib><creatorcontrib>Estupiñan-Lopez, Francisco</creatorcontrib><creatorcontrib>Almeraya-Calderon, Facundo</creatorcontrib><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><title>Metals (Basel )</title><description>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</description><subject>Aeronautics</subject><subject>Aerospace industry</subject><subject>Aircraft</subject><subject>Biomedical materials</subject><subject>corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Damage tolerance</subject><subject>Electrochemical noise</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Exposure</subject><subject>Hydrogen</subject><subject>Noise</subject><subject>Pitting (corrosion)</subject><subject>potentiodynamic polarization</subject><subject>Power spectral density</subject><subject>PSD</subject><subject>Room temperature</subject><subject>Sodium chloride</subject><subject>Sulfuric acid</subject><subject>titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Tolerances</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LJDEQhpvFhRX1tH8gsMe1Nd_pHJvBjwHFAV0PXkJ1JhkytJ02SR_m39vjrGJd6qUonvp4q-o3wReMaXz56gohWBGM6Y_qmGIlaq4wOfqmf1VnOW_xHA2VWOvjanqcsnVjCV3oQ9mhEtEqlBKGDVrElGIOcUDRo6dQL1b0fJ9l29f0caj5S6rpfTxHMKw_6_wZtX0fdxn5mFDrUhxgKsFCj9px7GdRZmA-rX566LM7-59Pqn_XV0-L2_ru4Wa5aO9qyyQvtQPmvO1UpzkDkEID0aRr9HymxVRQ3AnqvOdKOCadAtVJLVVDHXaMWtDspFoeuOsIWzOm8AppZyIE81GIaWMgzev1zqzBN523zKq14uABlGx4R7mSXlgh9qw_B9aY4tvkcjHbOKVhXt9QIbgkWHA1d_09dNn5dzk5_zWVYLO3yXyzib0Dir2CxA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Jaquez-Muñoz, Jesus</creator><creator>Gaona-Tiburcio, Citlalli</creator><creator>Lira-Martinez, Alejandro</creator><creator>Zambrano-Robledo, Patricia</creator><creator>Maldonado-Bandala, Erick</creator><creator>Samaniego-Gamez, Oliver</creator><creator>Nieves-Mendoza, Demetrio</creator><creator>Olguin-Coca, Javier</creator><creator>Estupiñan-Lopez, Francisco</creator><creator>Almeraya-Calderon, Facundo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0002-9491-0069</orcidid><orcidid>https://orcid.org/0000-0003-0930-8135</orcidid></search><sort><creationdate>20210701</creationdate><title>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</title><author>Jaquez-Muñoz, Jesus ; Gaona-Tiburcio, Citlalli ; Lira-Martinez, Alejandro ; Zambrano-Robledo, Patricia ; Maldonado-Bandala, Erick ; Samaniego-Gamez, Oliver ; Nieves-Mendoza, Demetrio ; Olguin-Coca, Javier ; Estupiñan-Lopez, Francisco ; Almeraya-Calderon, Facundo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aeronautics</topic><topic>Aerospace industry</topic><topic>Aircraft</topic><topic>Biomedical materials</topic><topic>corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Damage tolerance</topic><topic>Electrochemical noise</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Exposure</topic><topic>Hydrogen</topic><topic>Noise</topic><topic>Pitting (corrosion)</topic><topic>potentiodynamic polarization</topic><topic>Power spectral density</topic><topic>PSD</topic><topic>Room temperature</topic><topic>Sodium chloride</topic><topic>Sulfuric acid</topic><topic>titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaquez-Muñoz, Jesus</creatorcontrib><creatorcontrib>Gaona-Tiburcio, Citlalli</creatorcontrib><creatorcontrib>Lira-Martinez, Alejandro</creatorcontrib><creatorcontrib>Zambrano-Robledo, Patricia</creatorcontrib><creatorcontrib>Maldonado-Bandala, Erick</creatorcontrib><creatorcontrib>Samaniego-Gamez, Oliver</creatorcontrib><creatorcontrib>Nieves-Mendoza, Demetrio</creatorcontrib><creatorcontrib>Olguin-Coca, Javier</creatorcontrib><creatorcontrib>Estupiñan-Lopez, Francisco</creatorcontrib><creatorcontrib>Almeraya-Calderon, Facundo</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaquez-Muñoz, Jesus</au><au>Gaona-Tiburcio, Citlalli</au><au>Lira-Martinez, Alejandro</au><au>Zambrano-Robledo, Patricia</au><au>Maldonado-Bandala, Erick</au><au>Samaniego-Gamez, Oliver</au><au>Nieves-Mendoza, Demetrio</au><au>Olguin-Coca, Javier</au><au>Estupiñan-Lopez, Francisco</au><au>Almeraya-Calderon, Facundo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications</atitle><jtitle>Metals (Basel )</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>7</issue><spage>1002</spage><pages>1002-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Titanium alloys are used in different industries like biomedical, aerospace, aeronautic, chemical, and naval. Those industries have high requirements with few damage tolerances. Therefore, they are necessary to use materials that present fatigue, mechanical, and corrosion resistance. Although Ti-alloys are material with high performance, they are exposed to corrosion in marine and industrial environments. This research shows the corrosion behavior of three titanium alloys, specifically Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V. Alloys were exposed on two electrolytes to a 3.5 wt % H2SO4 and NaCl solutions at room temperature using cyclic potentiodynamic polarization (CPP) and electrochemical noise (EN) according to ASTM G61 and ASTM G199 standards. CPP technique was employed to obtain electrochemical parameters as the passivation range (PR), corrosion type, passive layer persistence, corrosion potential (Ecorr), and corrosion rate. EN was analyzed by power spectral density (PSD) in voltage. Results obtained revealed pseudopassivation in CPP and PSD exposed on NaCl for Ti-6Al-2Sn-4Zr-2Mo, indicating instability and corrosion rate lower. However, Ti-6Al-4V presented the highest corrosion rate in both electrolytes. Ti-6Al-2Sn-4Zr-2Mo revealed pseudopassivation in CPP and PSD in NaCl, indicating a passive layer unstable. However, the corrosion rate was lower in both solutions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11071002</doi><orcidid>https://orcid.org/0000-0002-3014-2814</orcidid><orcidid>https://orcid.org/0000-0001-9072-3090</orcidid><orcidid>https://orcid.org/0000-0002-9491-0069</orcidid><orcidid>https://orcid.org/0000-0003-0930-8135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-07, Vol.11 (7), p.1002
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_daf8bfc3c7d74afaa7684b2476f5c559
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aeronautics
Aerospace industry
Aircraft
Biomedical materials
corrosion
Corrosion fatigue
Corrosion potential
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Damage tolerance
Electrochemical noise
Electrode polarization
Electrolytes
Exposure
Hydrogen
Noise
Pitting (corrosion)
potentiodynamic polarization
Power spectral density
PSD
Room temperature
Sodium chloride
Sulfuric acid
titanium
Titanium alloys
Titanium base alloys
Tolerances
title Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Susceptibility%20to%20Pitting%20Corrosion%20of%20Ti-CP2,%20Ti-6Al-2Sn-4Zr-2Mo,%20and%20Ti-6Al-4V%20Alloys%20for%20Aeronautical%20Applications&rft.jtitle=Metals%20(Basel%20)&rft.au=Jaquez-Mu%C3%B1oz,%20Jesus&rft.date=2021-07-01&rft.volume=11&rft.issue=7&rft.spage=1002&rft.pages=1002-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11071002&rft_dat=%3Cproquest_doaj_%3E2554610547%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-ea3efcb7b943aa659a191b89110c02520b52eff475e36e7a7b696782e0e32ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554610547&rft_id=info:pmid/&rfr_iscdi=true