Loading…

Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point

In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a trans...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mathematics and mathematical sciences 2022-07, Vol.2022, p.1-7
Main Authors: Akwasi Anamuah Mensah, Patrick, Obeng-Denteh, William, Issaka, Ibrahim, Baah Gyamfi, Kwasi, Asamoah, Joshua Kiddy K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993
container_end_page 7
container_issue
container_start_page 1
container_title International journal of mathematics and mathematical sciences
container_volume 2022
creator Akwasi Anamuah Mensah, Patrick
Obeng-Denteh, William
Issaka, Ibrahim
Baah Gyamfi, Kwasi
Asamoah, Joshua Kiddy K.
description In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.
doi_str_mv 10.1155/2022/1255614
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569490</galeid><doaj_id>oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb</doaj_id><sourcerecordid>A710569490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</originalsourceid><addsrcrecordid>eNp9kt-KEzEUxgdRsK7e-QADXurs5mQmmczlUlxdqLioex3y56RNaZOaTN0VvPAdfEOfxLRTFEEkF4Hv_M5HvvBV1XMg5wCMXVBC6QVQxjh0D6oZcNE3pKPsYTUjwKGBHujj6knOa0JAUMpm1bfb7MOyHldYL-LS59Gb-p3a1SrX87jdqYS2HuNxPt_r07AIH1fxblJj-IJpicFgrYI9ah9wo-7V6GOoozsqN5h8tD-__4D6yt8Xz5vow_i0euTUJuOz031W3V69_jR_2yzev7meXy4a07J-bFxvuVOkA20NYQjOWMAO0GjXdchoi622h0RcaABqFCWKCda5nou2H4b2rLqefG1Ua7lLfqvSVxmVl0chpqVUqSTfoLSaIEPat0aL8nOtQqE5090grCDa6eL1YvLapfh5j3mU67hPoTxfUj4QQQdOxR9qqYqpDy6OSZmtz0Ze9kAYH7qBFOr8H1Q5FrfexIDOF_2vhVfTgkkx54Tudxgg8lABeaiAPFWg4C8nfOWDVXf-__QvmHKuWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690829628</pqid></control><display><type>article</type><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K.</creator><contributor>Sidhu, Harvinder S. ; Harvinder S Sidhu</contributor><creatorcontrib>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K. ; Sidhu, Harvinder S. ; Harvinder S Sidhu</creatorcontrib><description>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2022/1255614</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Bifurcations ; Comparative analysis ; Convergence ; Convergence (Social sciences) ; Dynamical systems ; Equilibrium ; Laws, regulations and rules ; Neighborhoods ; Orbits ; Power law ; Relaxation time</subject><ispartof>International journal of mathematics and mathematical sciences, 2022-07, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Patrick Akwasi Anamuah Mensah et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Patrick Akwasi Anamuah Mensah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</cites><orcidid>0000-0002-1865-290X ; 0000-0002-9820-1649 ; 0000-0002-7066-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2690829628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2690829628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Sidhu, Harvinder S.</contributor><contributor>Harvinder S Sidhu</contributor><creatorcontrib>Akwasi Anamuah Mensah, Patrick</creatorcontrib><creatorcontrib>Obeng-Denteh, William</creatorcontrib><creatorcontrib>Issaka, Ibrahim</creatorcontrib><creatorcontrib>Baah Gyamfi, Kwasi</creatorcontrib><creatorcontrib>Asamoah, Joshua Kiddy K.</creatorcontrib><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><title>International journal of mathematics and mathematical sciences</title><description>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</description><subject>Bifurcations</subject><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Convergence (Social sciences)</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Laws, regulations and rules</subject><subject>Neighborhoods</subject><subject>Orbits</subject><subject>Power law</subject><subject>Relaxation time</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kt-KEzEUxgdRsK7e-QADXurs5mQmmczlUlxdqLioex3y56RNaZOaTN0VvPAdfEOfxLRTFEEkF4Hv_M5HvvBV1XMg5wCMXVBC6QVQxjh0D6oZcNE3pKPsYTUjwKGBHujj6knOa0JAUMpm1bfb7MOyHldYL-LS59Gb-p3a1SrX87jdqYS2HuNxPt_r07AIH1fxblJj-IJpicFgrYI9ah9wo-7V6GOoozsqN5h8tD-__4D6yt8Xz5vow_i0euTUJuOz031W3V69_jR_2yzev7meXy4a07J-bFxvuVOkA20NYQjOWMAO0GjXdchoi622h0RcaABqFCWKCda5nou2H4b2rLqefG1Ua7lLfqvSVxmVl0chpqVUqSTfoLSaIEPat0aL8nOtQqE5090grCDa6eL1YvLapfh5j3mU67hPoTxfUj4QQQdOxR9qqYqpDy6OSZmtz0Ze9kAYH7qBFOr8H1Q5FrfexIDOF_2vhVfTgkkx54Tudxgg8lABeaiAPFWg4C8nfOWDVXf-__QvmHKuWg</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Akwasi Anamuah Mensah, Patrick</creator><creator>Obeng-Denteh, William</creator><creator>Issaka, Ibrahim</creator><creator>Baah Gyamfi, Kwasi</creator><creator>Asamoah, Joshua Kiddy K.</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1865-290X</orcidid><orcidid>https://orcid.org/0000-0002-9820-1649</orcidid><orcidid>https://orcid.org/0000-0002-7066-246X</orcidid></search><sort><creationdate>20220707</creationdate><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><author>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Convergence (Social sciences)</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Laws, regulations and rules</topic><topic>Neighborhoods</topic><topic>Orbits</topic><topic>Power law</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akwasi Anamuah Mensah, Patrick</creatorcontrib><creatorcontrib>Obeng-Denteh, William</creatorcontrib><creatorcontrib>Issaka, Ibrahim</creatorcontrib><creatorcontrib>Baah Gyamfi, Kwasi</creatorcontrib><creatorcontrib>Asamoah, Joshua Kiddy K.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akwasi Anamuah Mensah, Patrick</au><au>Obeng-Denteh, William</au><au>Issaka, Ibrahim</au><au>Baah Gyamfi, Kwasi</au><au>Asamoah, Joshua Kiddy K.</au><au>Sidhu, Harvinder S.</au><au>Harvinder S Sidhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2022-07-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1255614</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1865-290X</orcidid><orcidid>https://orcid.org/0000-0002-9820-1649</orcidid><orcidid>https://orcid.org/0000-0002-7066-246X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 2022-07, Vol.2022, p.1-7
issn 0161-1712
1687-0425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Bifurcations
Comparative analysis
Convergence
Convergence (Social sciences)
Dynamical systems
Equilibrium
Laws, regulations and rules
Neighborhoods
Orbits
Power law
Relaxation time
title Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Logistic%20Map%20as%20Compared%20to%20the%20Cubic%20Map%20to%20Show%20the%20Convergence%20and%20the%20Relaxation%20of%20the%20Period%E2%80%931%20Fixed%20Point&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Akwasi%20Anamuah%20Mensah,%20Patrick&rft.date=2022-07-07&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2022/1255614&rft_dat=%3Cgale_doaj_%3EA710569490%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2690829628&rft_id=info:pmid/&rft_galeid=A710569490&rfr_iscdi=true