Loading…
Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point
In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a trans...
Saved in:
Published in: | International journal of mathematics and mathematical sciences 2022-07, Vol.2022, p.1-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | International journal of mathematics and mathematical sciences |
container_volume | 2022 |
creator | Akwasi Anamuah Mensah, Patrick Obeng-Denteh, William Issaka, Ibrahim Baah Gyamfi, Kwasi Asamoah, Joshua Kiddy K. |
description | In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1. |
doi_str_mv | 10.1155/2022/1255614 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569490</galeid><doaj_id>oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb</doaj_id><sourcerecordid>A710569490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</originalsourceid><addsrcrecordid>eNp9kt-KEzEUxgdRsK7e-QADXurs5mQmmczlUlxdqLioex3y56RNaZOaTN0VvPAdfEOfxLRTFEEkF4Hv_M5HvvBV1XMg5wCMXVBC6QVQxjh0D6oZcNE3pKPsYTUjwKGBHujj6knOa0JAUMpm1bfb7MOyHldYL-LS59Gb-p3a1SrX87jdqYS2HuNxPt_r07AIH1fxblJj-IJpicFgrYI9ah9wo-7V6GOoozsqN5h8tD-__4D6yt8Xz5vow_i0euTUJuOz031W3V69_jR_2yzev7meXy4a07J-bFxvuVOkA20NYQjOWMAO0GjXdchoi622h0RcaABqFCWKCda5nou2H4b2rLqefG1Ua7lLfqvSVxmVl0chpqVUqSTfoLSaIEPat0aL8nOtQqE5090grCDa6eL1YvLapfh5j3mU67hPoTxfUj4QQQdOxR9qqYqpDy6OSZmtz0Ze9kAYH7qBFOr8H1Q5FrfexIDOF_2vhVfTgkkx54Tudxgg8lABeaiAPFWg4C8nfOWDVXf-__QvmHKuWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690829628</pqid></control><display><type>article</type><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K.</creator><contributor>Sidhu, Harvinder S. ; Harvinder S Sidhu</contributor><creatorcontrib>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K. ; Sidhu, Harvinder S. ; Harvinder S Sidhu</creatorcontrib><description>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2022/1255614</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Bifurcations ; Comparative analysis ; Convergence ; Convergence (Social sciences) ; Dynamical systems ; Equilibrium ; Laws, regulations and rules ; Neighborhoods ; Orbits ; Power law ; Relaxation time</subject><ispartof>International journal of mathematics and mathematical sciences, 2022-07, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Patrick Akwasi Anamuah Mensah et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Patrick Akwasi Anamuah Mensah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</cites><orcidid>0000-0002-1865-290X ; 0000-0002-9820-1649 ; 0000-0002-7066-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2690829628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2690829628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Sidhu, Harvinder S.</contributor><contributor>Harvinder S Sidhu</contributor><creatorcontrib>Akwasi Anamuah Mensah, Patrick</creatorcontrib><creatorcontrib>Obeng-Denteh, William</creatorcontrib><creatorcontrib>Issaka, Ibrahim</creatorcontrib><creatorcontrib>Baah Gyamfi, Kwasi</creatorcontrib><creatorcontrib>Asamoah, Joshua Kiddy K.</creatorcontrib><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><title>International journal of mathematics and mathematical sciences</title><description>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</description><subject>Bifurcations</subject><subject>Comparative analysis</subject><subject>Convergence</subject><subject>Convergence (Social sciences)</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Laws, regulations and rules</subject><subject>Neighborhoods</subject><subject>Orbits</subject><subject>Power law</subject><subject>Relaxation time</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kt-KEzEUxgdRsK7e-QADXurs5mQmmczlUlxdqLioex3y56RNaZOaTN0VvPAdfEOfxLRTFEEkF4Hv_M5HvvBV1XMg5wCMXVBC6QVQxjh0D6oZcNE3pKPsYTUjwKGBHujj6knOa0JAUMpm1bfb7MOyHldYL-LS59Gb-p3a1SrX87jdqYS2HuNxPt_r07AIH1fxblJj-IJpicFgrYI9ah9wo-7V6GOoozsqN5h8tD-__4D6yt8Xz5vow_i0euTUJuOz031W3V69_jR_2yzev7meXy4a07J-bFxvuVOkA20NYQjOWMAO0GjXdchoi622h0RcaABqFCWKCda5nou2H4b2rLqefG1Ua7lLfqvSVxmVl0chpqVUqSTfoLSaIEPat0aL8nOtQqE5090grCDa6eL1YvLapfh5j3mU67hPoTxfUj4QQQdOxR9qqYqpDy6OSZmtz0Ze9kAYH7qBFOr8H1Q5FrfexIDOF_2vhVfTgkkx54Tudxgg8lABeaiAPFWg4C8nfOWDVXf-__QvmHKuWg</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Akwasi Anamuah Mensah, Patrick</creator><creator>Obeng-Denteh, William</creator><creator>Issaka, Ibrahim</creator><creator>Baah Gyamfi, Kwasi</creator><creator>Asamoah, Joshua Kiddy K.</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1865-290X</orcidid><orcidid>https://orcid.org/0000-0002-9820-1649</orcidid><orcidid>https://orcid.org/0000-0002-7066-246X</orcidid></search><sort><creationdate>20220707</creationdate><title>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</title><author>Akwasi Anamuah Mensah, Patrick ; Obeng-Denteh, William ; Issaka, Ibrahim ; Baah Gyamfi, Kwasi ; Asamoah, Joshua Kiddy K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Comparative analysis</topic><topic>Convergence</topic><topic>Convergence (Social sciences)</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Laws, regulations and rules</topic><topic>Neighborhoods</topic><topic>Orbits</topic><topic>Power law</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akwasi Anamuah Mensah, Patrick</creatorcontrib><creatorcontrib>Obeng-Denteh, William</creatorcontrib><creatorcontrib>Issaka, Ibrahim</creatorcontrib><creatorcontrib>Baah Gyamfi, Kwasi</creatorcontrib><creatorcontrib>Asamoah, Joshua Kiddy K.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akwasi Anamuah Mensah, Patrick</au><au>Obeng-Denteh, William</au><au>Issaka, Ibrahim</au><au>Baah Gyamfi, Kwasi</au><au>Asamoah, Joshua Kiddy K.</au><au>Sidhu, Harvinder S.</au><au>Harvinder S Sidhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2022-07-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>In this paper, we employ the logistic map and the cubic map to locate the relaxation and the convergence to the periodic fixed point of a system, specifically, the period—1 fixed point. The study has shown that the period—1 fixed point of a logistic map as a recurrence has its convergence at a transcritical bifurcation having its power-law fit with exponent β=−1 when α=1 and μ=0. The cubic map shows its convergence to the fixed point at a pitchfork bifurcation decaying at a power law with exponent β=−1/2α=1 and μ=0. However, the system shows their relaxation time at the same power law with exponents and z=−1.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1255614</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1865-290X</orcidid><orcidid>https://orcid.org/0000-0002-9820-1649</orcidid><orcidid>https://orcid.org/0000-0002-7066-246X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-1712 |
ispartof | International journal of mathematics and mathematical sciences, 2022-07, Vol.2022, p.1-7 |
issn | 0161-1712 1687-0425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_db0e5e273cb84253ae8b65b498d80bfb |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Bifurcations Comparative analysis Convergence Convergence (Social sciences) Dynamical systems Equilibrium Laws, regulations and rules Neighborhoods Orbits Power law Relaxation time |
title | Using the Logistic Map as Compared to the Cubic Map to Show the Convergence and the Relaxation of the Period–1 Fixed Point |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20Logistic%20Map%20as%20Compared%20to%20the%20Cubic%20Map%20to%20Show%20the%20Convergence%20and%20the%20Relaxation%20of%20the%20Period%E2%80%931%20Fixed%20Point&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Akwasi%20Anamuah%20Mensah,%20Patrick&rft.date=2022-07-07&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2022/1255614&rft_dat=%3Cgale_doaj_%3EA710569490%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-f7d6fa041bdc05e1fcd1e41ecbf44e523e3bd001868b112ca20a5854f76837993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2690829628&rft_id=info:pmid/&rft_galeid=A710569490&rfr_iscdi=true |