Loading…
Point-of-care prediction model of loop gain in patients with obstructive sleep apnea: development and validation
High loop gain (unstable ventilatory control) is an important-but difficult to measure-contributor to obstructive sleep apnea (OSA) pathogenesis, predicting OSA sequelae and/or treatment response. Our objective was to develop and validate a clinical prediction tool of loop gain. A retrospective coho...
Saved in:
Published in: | BMC pulmonary medicine 2022-04, Vol.22 (1), p.158-158, Article 158 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High loop gain (unstable ventilatory control) is an important-but difficult to measure-contributor to obstructive sleep apnea (OSA) pathogenesis, predicting OSA sequelae and/or treatment response. Our objective was to develop and validate a clinical prediction tool of loop gain.
A retrospective cohort of consecutive adults with OSA (apnea-hypopnea index, AHI > 5/hour) based on in-laboratory polysomnography 01/2017-12/2018 was randomly split into a training and test-set (3:1-ratio). Using a customized algorithm ("reference standard") loop gain was quantified from raw polysomnography signals on a continuous scale and additionally dichotomized (high > 0.7). Candidate predictors included general patient characteristics and routine polysomnography data. The model was developed (training-set) using linear regression with backward selection (tenfold cross-validated mean square errors); the predicted loop gain of the final linear regression model was used to predict loop gain class. More complex, alternative models including lasso regression or random forests were considered but did not meet pre-specified superiority-criteria. Final model performance was validated on the test-set.
The total cohort included 1055 patients (33% high loop gain). Based on the final model, higher AHI (beta = 0.0016; P |
---|---|
ISSN: | 1471-2466 1471-2466 |
DOI: | 10.1186/s12890-022-01950-y |