Loading…
Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method
Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, n...
Saved in:
Published in: | Energies (Basel) 2020-03, Vol.13 (5), p.1249 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1249 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Ugwuanyi, Nnaemeka Sunday Kestelyn, Xavier Marinescu, Bogdan Thomas, Olivier |
description | Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time. |
doi_str_mv | 10.3390/en13051249 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6</doaj_id><sourcerecordid>2376069321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</originalsourceid><addsrcrecordid>eNpVkU1PwzAMhisEEgh24RdU4gTSIImbpjlOE1_S-BAwrpHbuNCpa0bSgfbvyRjiwxdbrx4_BztJDjk7BdDsjDoOTHKR6a1kj2udDzlTsP1n3k0GIcxYLAAOAHvJ8737IJ8-rkJP8_TWdW3TEfr0xlls01GH7So0IZ2GpntJx26-WPbYNy7m7Sp9ILusyMY1P4_0RWzpDfWvzh4kOzW2gQbffT-ZXpw_ja-Gk7vL6_FoMqxAy36YoyxzoTWgJsuQFUgaJQkEVKUWGZZUCSEYEXHFeFXnlbAKsyzuodIl7CfXG691ODML38zRr4zDxnwFzr8Y9H1TtWRsCVIxWRGrdSZlXei6KAq0nCttwebRdbxxvWL7T3U1mph1xoTkueTqnUf2aMMuvHtbUujNzC19vEowAlTOcg1iTZ1sqMq7EDzVP1rOzPpl5vdl8Akt5YeE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376069321</pqid></control><display><type>article</type><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><source>Publicly Available Content Database</source><creator>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</creator><creatorcontrib>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</creatorcontrib><description>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13051249</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Canonical forms ; Coefficients ; Computation ; Coordinate transformations ; Design ; Eigenvalues ; Electric power ; Engineering Sciences ; Methods ; Modal analysis ; modal interaction ; Nonlinear analysis ; nonlinear modal analysis ; Nonlinearity ; Polynomials ; power system analysis ; reduced normal form ; Variables</subject><ispartof>Energies (Basel), 2020-03, Vol.13 (5), p.1249</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</citedby><cites>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</cites><orcidid>0000-0001-7240-5259 ; 0000-0002-8578-8962 ; 0000-0002-8192-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2376069321/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376069321?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02516517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ugwuanyi, Nnaemeka Sunday</creatorcontrib><creatorcontrib>Kestelyn, Xavier</creatorcontrib><creatorcontrib>Marinescu, Bogdan</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><title>Energies (Basel)</title><description>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</description><subject>Canonical forms</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Coordinate transformations</subject><subject>Design</subject><subject>Eigenvalues</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Methods</subject><subject>Modal analysis</subject><subject>modal interaction</subject><subject>Nonlinear analysis</subject><subject>nonlinear modal analysis</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>power system analysis</subject><subject>reduced normal form</subject><subject>Variables</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1PwzAMhisEEgh24RdU4gTSIImbpjlOE1_S-BAwrpHbuNCpa0bSgfbvyRjiwxdbrx4_BztJDjk7BdDsjDoOTHKR6a1kj2udDzlTsP1n3k0GIcxYLAAOAHvJ8737IJ8-rkJP8_TWdW3TEfr0xlls01GH7So0IZ2GpntJx26-WPbYNy7m7Sp9ILusyMY1P4_0RWzpDfWvzh4kOzW2gQbffT-ZXpw_ja-Gk7vL6_FoMqxAy36YoyxzoTWgJsuQFUgaJQkEVKUWGZZUCSEYEXHFeFXnlbAKsyzuodIl7CfXG691ODML38zRr4zDxnwFzr8Y9H1TtWRsCVIxWRGrdSZlXei6KAq0nCttwebRdbxxvWL7T3U1mph1xoTkueTqnUf2aMMuvHtbUujNzC19vEowAlTOcg1iTZ1sqMq7EDzVP1rOzPpl5vdl8Akt5YeE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ugwuanyi, Nnaemeka Sunday</creator><creator>Kestelyn, Xavier</creator><creator>Marinescu, Bogdan</creator><creator>Thomas, Olivier</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid><orcidid>https://orcid.org/0000-0002-8578-8962</orcidid><orcidid>https://orcid.org/0000-0002-8192-0743</orcidid></search><sort><creationdate>20200301</creationdate><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><author>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Canonical forms</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Coordinate transformations</topic><topic>Design</topic><topic>Eigenvalues</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Methods</topic><topic>Modal analysis</topic><topic>modal interaction</topic><topic>Nonlinear analysis</topic><topic>nonlinear modal analysis</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>power system analysis</topic><topic>reduced normal form</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugwuanyi, Nnaemeka Sunday</creatorcontrib><creatorcontrib>Kestelyn, Xavier</creatorcontrib><creatorcontrib>Marinescu, Bogdan</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ugwuanyi, Nnaemeka Sunday</au><au>Kestelyn, Xavier</au><au>Marinescu, Bogdan</au><au>Thomas, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</atitle><jtitle>Energies (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1249</spage><pages>1249-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13051249</doi><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid><orcidid>https://orcid.org/0000-0002-8578-8962</orcidid><orcidid>https://orcid.org/0000-0002-8192-0743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-03, Vol.13 (5), p.1249 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6 |
source | Publicly Available Content Database |
subjects | Canonical forms Coefficients Computation Coordinate transformations Design Eigenvalues Electric power Engineering Sciences Methods Modal analysis modal interaction Nonlinear analysis nonlinear modal analysis Nonlinearity Polynomials power system analysis reduced normal form Variables |
title | Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20System%20Nonlinear%20Modal%20Analysis%20Using%20Computationally%20Reduced%20Normal%20Form%20Method&rft.jtitle=Energies%20(Basel)&rft.au=Ugwuanyi,%20Nnaemeka%20Sunday&rft.date=2020-03-01&rft.volume=13&rft.issue=5&rft.spage=1249&rft.pages=1249-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13051249&rft_dat=%3Cproquest_doaj_%3E2376069321%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376069321&rft_id=info:pmid/&rfr_iscdi=true |