Loading…

Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method

Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, n...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-03, Vol.13 (5), p.1249
Main Authors: Ugwuanyi, Nnaemeka Sunday, Kestelyn, Xavier, Marinescu, Bogdan, Thomas, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3
cites cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3
container_end_page
container_issue 5
container_start_page 1249
container_title Energies (Basel)
container_volume 13
creator Ugwuanyi, Nnaemeka Sunday
Kestelyn, Xavier
Marinescu, Bogdan
Thomas, Olivier
description Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.
doi_str_mv 10.3390/en13051249
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6</doaj_id><sourcerecordid>2376069321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</originalsourceid><addsrcrecordid>eNpVkU1PwzAMhisEEgh24RdU4gTSIImbpjlOE1_S-BAwrpHbuNCpa0bSgfbvyRjiwxdbrx4_BztJDjk7BdDsjDoOTHKR6a1kj2udDzlTsP1n3k0GIcxYLAAOAHvJ8737IJ8-rkJP8_TWdW3TEfr0xlls01GH7So0IZ2GpntJx26-WPbYNy7m7Sp9ILusyMY1P4_0RWzpDfWvzh4kOzW2gQbffT-ZXpw_ja-Gk7vL6_FoMqxAy36YoyxzoTWgJsuQFUgaJQkEVKUWGZZUCSEYEXHFeFXnlbAKsyzuodIl7CfXG691ODML38zRr4zDxnwFzr8Y9H1TtWRsCVIxWRGrdSZlXei6KAq0nCttwebRdbxxvWL7T3U1mph1xoTkueTqnUf2aMMuvHtbUujNzC19vEowAlTOcg1iTZ1sqMq7EDzVP1rOzPpl5vdl8Akt5YeE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376069321</pqid></control><display><type>article</type><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><source>Publicly Available Content Database</source><creator>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</creator><creatorcontrib>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</creatorcontrib><description>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13051249</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Canonical forms ; Coefficients ; Computation ; Coordinate transformations ; Design ; Eigenvalues ; Electric power ; Engineering Sciences ; Methods ; Modal analysis ; modal interaction ; Nonlinear analysis ; nonlinear modal analysis ; Nonlinearity ; Polynomials ; power system analysis ; reduced normal form ; Variables</subject><ispartof>Energies (Basel), 2020-03, Vol.13 (5), p.1249</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</citedby><cites>FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</cites><orcidid>0000-0001-7240-5259 ; 0000-0002-8578-8962 ; 0000-0002-8192-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2376069321/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2376069321?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02516517$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ugwuanyi, Nnaemeka Sunday</creatorcontrib><creatorcontrib>Kestelyn, Xavier</creatorcontrib><creatorcontrib>Marinescu, Bogdan</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><title>Energies (Basel)</title><description>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</description><subject>Canonical forms</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Coordinate transformations</subject><subject>Design</subject><subject>Eigenvalues</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Methods</subject><subject>Modal analysis</subject><subject>modal interaction</subject><subject>Nonlinear analysis</subject><subject>nonlinear modal analysis</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>power system analysis</subject><subject>reduced normal form</subject><subject>Variables</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1PwzAMhisEEgh24RdU4gTSIImbpjlOE1_S-BAwrpHbuNCpa0bSgfbvyRjiwxdbrx4_BztJDjk7BdDsjDoOTHKR6a1kj2udDzlTsP1n3k0GIcxYLAAOAHvJ8737IJ8-rkJP8_TWdW3TEfr0xlls01GH7So0IZ2GpntJx26-WPbYNy7m7Sp9ILusyMY1P4_0RWzpDfWvzh4kOzW2gQbffT-ZXpw_ja-Gk7vL6_FoMqxAy36YoyxzoTWgJsuQFUgaJQkEVKUWGZZUCSEYEXHFeFXnlbAKsyzuodIl7CfXG691ODML38zRr4zDxnwFzr8Y9H1TtWRsCVIxWRGrdSZlXei6KAq0nCttwebRdbxxvWL7T3U1mph1xoTkueTqnUf2aMMuvHtbUujNzC19vEowAlTOcg1iTZ1sqMq7EDzVP1rOzPpl5vdl8Akt5YeE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ugwuanyi, Nnaemeka Sunday</creator><creator>Kestelyn, Xavier</creator><creator>Marinescu, Bogdan</creator><creator>Thomas, Olivier</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid><orcidid>https://orcid.org/0000-0002-8578-8962</orcidid><orcidid>https://orcid.org/0000-0002-8192-0743</orcidid></search><sort><creationdate>20200301</creationdate><title>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</title><author>Ugwuanyi, Nnaemeka Sunday ; Kestelyn, Xavier ; Marinescu, Bogdan ; Thomas, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Canonical forms</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Coordinate transformations</topic><topic>Design</topic><topic>Eigenvalues</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Methods</topic><topic>Modal analysis</topic><topic>modal interaction</topic><topic>Nonlinear analysis</topic><topic>nonlinear modal analysis</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>power system analysis</topic><topic>reduced normal form</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugwuanyi, Nnaemeka Sunday</creatorcontrib><creatorcontrib>Kestelyn, Xavier</creatorcontrib><creatorcontrib>Marinescu, Bogdan</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ugwuanyi, Nnaemeka Sunday</au><au>Kestelyn, Xavier</au><au>Marinescu, Bogdan</au><au>Thomas, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method</atitle><jtitle>Energies (Basel)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>13</volume><issue>5</issue><spage>1249</spage><pages>1249-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13051249</doi><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid><orcidid>https://orcid.org/0000-0002-8578-8962</orcidid><orcidid>https://orcid.org/0000-0002-8192-0743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-03, Vol.13 (5), p.1249
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_db35705ce0f9455f89f888ad1179d3d6
source Publicly Available Content Database
subjects Canonical forms
Coefficients
Computation
Coordinate transformations
Design
Eigenvalues
Electric power
Engineering Sciences
Methods
Modal analysis
modal interaction
Nonlinear analysis
nonlinear modal analysis
Nonlinearity
Polynomials
power system analysis
reduced normal form
Variables
title Power System Nonlinear Modal Analysis Using Computationally Reduced Normal Form Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20System%20Nonlinear%20Modal%20Analysis%20Using%20Computationally%20Reduced%20Normal%20Form%20Method&rft.jtitle=Energies%20(Basel)&rft.au=Ugwuanyi,%20Nnaemeka%20Sunday&rft.date=2020-03-01&rft.volume=13&rft.issue=5&rft.spage=1249&rft.pages=1249-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13051249&rft_dat=%3Cproquest_doaj_%3E2376069321%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-6a5b62993a9ed0a08ae9a5e2a3a7b924abec2220eee1701cf6c2d7a44a5ba79b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376069321&rft_id=info:pmid/&rfr_iscdi=true