Loading…
Parameter Estimation of KST-IRT Model under Local Dependence
A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic...
Saved in:
Published in: | Psych 2023-08, Vol.5 (3), p.908-927 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43 |
container_end_page | 927 |
container_issue | 3 |
container_start_page | 908 |
container_title | Psych |
container_volume | 5 |
creator | Ye, Sangbeak Kelava, Augustin Noventa, Stefano |
description | A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters. |
doi_str_mv | 10.3390/psych5030060 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8</doaj_id><sourcerecordid>2869560588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWGp3PsCAW0dzzwTcSG21WFG0rkMmF50ynYzJdNG3N1qRrs6Fn-98HADOEbwiRMLrPu3MJ4MEQg6PwAhzTMuKI3R80J-CSUprCCFmkElORuDmRUe9cYOLxSwNzUYPTeiK4IvHt1W5eF0VT8G6tth2NieWwei2uHO9y2Nn3Bk48bpNbvJXx-B9PltNH8rl8_1ierssDUYYll4KyllVScl8LaWzWhjkHce11IJxaDmjlBhqausQwdoTquuaMoSdt8RSMgaLPdcGvVZ9zJpxp4Ju1O8ixA-l49CY1ilbU4K9RIIwSTO6EsIK44SmVFriq8y62LP6GL62Lg1qHbaxy_oKV1xmnWyaU5f7lIkhpej8_1UE1c-71eG7yTewLHCT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869560588</pqid></control><display><type>article</type><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</creator><creatorcontrib>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</creatorcontrib><description>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</description><identifier>ISSN: 2624-8611</identifier><identifier>EISSN: 2624-8611</identifier><identifier>DOI: 10.3390/psych5030060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Debates ; EM algorithm ; Guttman scale ; Item response theory ; Knowledge ; KST-IRT model ; local dependence ; MML ; Parameter estimation ; Probability ; Rasch model</subject><ispartof>Psych, 2023-08, Vol.5 (3), p.908-927</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</citedby><cites>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869560588/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869560588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ye, Sangbeak</creatorcontrib><creatorcontrib>Kelava, Augustin</creatorcontrib><creatorcontrib>Noventa, Stefano</creatorcontrib><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><title>Psych</title><description>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</description><subject>Debates</subject><subject>EM algorithm</subject><subject>Guttman scale</subject><subject>Item response theory</subject><subject>Knowledge</subject><subject>KST-IRT model</subject><subject>local dependence</subject><subject>MML</subject><subject>Parameter estimation</subject><subject>Probability</subject><subject>Rasch model</subject><issn>2624-8611</issn><issn>2624-8611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtKAzEUhoMoWGp3PsCAW0dzzwTcSG21WFG0rkMmF50ynYzJdNG3N1qRrs6Fn-98HADOEbwiRMLrPu3MJ4MEQg6PwAhzTMuKI3R80J-CSUprCCFmkElORuDmRUe9cYOLxSwNzUYPTeiK4IvHt1W5eF0VT8G6tth2NieWwei2uHO9y2Nn3Bk48bpNbvJXx-B9PltNH8rl8_1ierssDUYYll4KyllVScl8LaWzWhjkHce11IJxaDmjlBhqausQwdoTquuaMoSdt8RSMgaLPdcGvVZ9zJpxp4Ju1O8ixA-l49CY1ilbU4K9RIIwSTO6EsIK44SmVFriq8y62LP6GL62Lg1qHbaxy_oKV1xmnWyaU5f7lIkhpej8_1UE1c-71eG7yTewLHCT</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Ye, Sangbeak</creator><creator>Kelava, Augustin</creator><creator>Noventa, Stefano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20230822</creationdate><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><author>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Debates</topic><topic>EM algorithm</topic><topic>Guttman scale</topic><topic>Item response theory</topic><topic>Knowledge</topic><topic>KST-IRT model</topic><topic>local dependence</topic><topic>MML</topic><topic>Parameter estimation</topic><topic>Probability</topic><topic>Rasch model</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Sangbeak</creatorcontrib><creatorcontrib>Kelava, Augustin</creatorcontrib><creatorcontrib>Noventa, Stefano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Psych</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Sangbeak</au><au>Kelava, Augustin</au><au>Noventa, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Estimation of KST-IRT Model under Local Dependence</atitle><jtitle>Psych</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>908</spage><epage>927</epage><pages>908-927</pages><issn>2624-8611</issn><eissn>2624-8611</eissn><abstract>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/psych5030060</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2624-8611 |
ispartof | Psych, 2023-08, Vol.5 (3), p.908-927 |
issn | 2624-8611 2624-8611 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Debates EM algorithm Guttman scale Item response theory Knowledge KST-IRT model local dependence MML Parameter estimation Probability Rasch model |
title | Parameter Estimation of KST-IRT Model under Local Dependence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Estimation%20of%20KST-IRT%20Model%20under%20Local%20Dependence&rft.jtitle=Psych&rft.au=Ye,%20Sangbeak&rft.date=2023-08-22&rft.volume=5&rft.issue=3&rft.spage=908&rft.epage=927&rft.pages=908-927&rft.issn=2624-8611&rft.eissn=2624-8611&rft_id=info:doi/10.3390/psych5030060&rft_dat=%3Cproquest_doaj_%3E2869560588%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869560588&rft_id=info:pmid/&rfr_iscdi=true |