Loading…

Parameter Estimation of KST-IRT Model under Local Dependence

A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic...

Full description

Saved in:
Bibliographic Details
Published in:Psych 2023-08, Vol.5 (3), p.908-927
Main Authors: Ye, Sangbeak, Kelava, Augustin, Noventa, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43
cites cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43
container_end_page 927
container_issue 3
container_start_page 908
container_title Psych
container_volume 5
creator Ye, Sangbeak
Kelava, Augustin
Noventa, Stefano
description A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.
doi_str_mv 10.3390/psych5030060
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8</doaj_id><sourcerecordid>2869560588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWGp3PsCAW0dzzwTcSG21WFG0rkMmF50ynYzJdNG3N1qRrs6Fn-98HADOEbwiRMLrPu3MJ4MEQg6PwAhzTMuKI3R80J-CSUprCCFmkElORuDmRUe9cYOLxSwNzUYPTeiK4IvHt1W5eF0VT8G6tth2NieWwei2uHO9y2Nn3Bk48bpNbvJXx-B9PltNH8rl8_1ierssDUYYll4KyllVScl8LaWzWhjkHce11IJxaDmjlBhqausQwdoTquuaMoSdt8RSMgaLPdcGvVZ9zJpxp4Ju1O8ixA-l49CY1ilbU4K9RIIwSTO6EsIK44SmVFriq8y62LP6GL62Lg1qHbaxy_oKV1xmnWyaU5f7lIkhpej8_1UE1c-71eG7yTewLHCT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869560588</pqid></control><display><type>article</type><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</creator><creatorcontrib>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</creatorcontrib><description>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</description><identifier>ISSN: 2624-8611</identifier><identifier>EISSN: 2624-8611</identifier><identifier>DOI: 10.3390/psych5030060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Debates ; EM algorithm ; Guttman scale ; Item response theory ; Knowledge ; KST-IRT model ; local dependence ; MML ; Parameter estimation ; Probability ; Rasch model</subject><ispartof>Psych, 2023-08, Vol.5 (3), p.908-927</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</citedby><cites>FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869560588/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869560588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ye, Sangbeak</creatorcontrib><creatorcontrib>Kelava, Augustin</creatorcontrib><creatorcontrib>Noventa, Stefano</creatorcontrib><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><title>Psych</title><description>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</description><subject>Debates</subject><subject>EM algorithm</subject><subject>Guttman scale</subject><subject>Item response theory</subject><subject>Knowledge</subject><subject>KST-IRT model</subject><subject>local dependence</subject><subject>MML</subject><subject>Parameter estimation</subject><subject>Probability</subject><subject>Rasch model</subject><issn>2624-8611</issn><issn>2624-8611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtKAzEUhoMoWGp3PsCAW0dzzwTcSG21WFG0rkMmF50ynYzJdNG3N1qRrs6Fn-98HADOEbwiRMLrPu3MJ4MEQg6PwAhzTMuKI3R80J-CSUprCCFmkElORuDmRUe9cYOLxSwNzUYPTeiK4IvHt1W5eF0VT8G6tth2NieWwei2uHO9y2Nn3Bk48bpNbvJXx-B9PltNH8rl8_1ierssDUYYll4KyllVScl8LaWzWhjkHce11IJxaDmjlBhqausQwdoTquuaMoSdt8RSMgaLPdcGvVZ9zJpxp4Ju1O8ixA-l49CY1ilbU4K9RIIwSTO6EsIK44SmVFriq8y62LP6GL62Lg1qHbaxy_oKV1xmnWyaU5f7lIkhpej8_1UE1c-71eG7yTewLHCT</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Ye, Sangbeak</creator><creator>Kelava, Augustin</creator><creator>Noventa, Stefano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20230822</creationdate><title>Parameter Estimation of KST-IRT Model under Local Dependence</title><author>Ye, Sangbeak ; Kelava, Augustin ; Noventa, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Debates</topic><topic>EM algorithm</topic><topic>Guttman scale</topic><topic>Item response theory</topic><topic>Knowledge</topic><topic>KST-IRT model</topic><topic>local dependence</topic><topic>MML</topic><topic>Parameter estimation</topic><topic>Probability</topic><topic>Rasch model</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Sangbeak</creatorcontrib><creatorcontrib>Kelava, Augustin</creatorcontrib><creatorcontrib>Noventa, Stefano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Psych</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Sangbeak</au><au>Kelava, Augustin</au><au>Noventa, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Estimation of KST-IRT Model under Local Dependence</atitle><jtitle>Psych</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>908</spage><epage>927</epage><pages>908-927</pages><issn>2624-8611</issn><eissn>2624-8611</eissn><abstract>A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/psych5030060</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-8611
ispartof Psych, 2023-08, Vol.5 (3), p.908-927
issn 2624-8611
2624-8611
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_db432f917359460d877d7ce7a449d3f8
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Debates
EM algorithm
Guttman scale
Item response theory
Knowledge
KST-IRT model
local dependence
MML
Parameter estimation
Probability
Rasch model
title Parameter Estimation of KST-IRT Model under Local Dependence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Estimation%20of%20KST-IRT%20Model%20under%20Local%20Dependence&rft.jtitle=Psych&rft.au=Ye,%20Sangbeak&rft.date=2023-08-22&rft.volume=5&rft.issue=3&rft.spage=908&rft.epage=927&rft.pages=908-927&rft.issn=2624-8611&rft.eissn=2624-8611&rft_id=info:doi/10.3390/psych5030060&rft_dat=%3Cproquest_doaj_%3E2869560588%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2120-f9746588995fb99eda7c1fe62b9a7560d65443c4cbde132af34abb4512efd3d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869560588&rft_id=info:pmid/&rfr_iscdi=true