Loading…
An optimal standalone wind-photovoltaic power plant system for green hydrogen generation: Case study for hydrogen refueling station
Sustainability goals include the utilization of renewable energy resources to supply the energy needs in addition to wastewater treatment to satisfy the water demand. Moreover, hydrogen has become a promising energy carrier and green fuel to decarbonize the industrial and transportation sectors. In...
Saved in:
Published in: | Results in engineering 2024-06, Vol.22, p.102234, Article 102234 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sustainability goals include the utilization of renewable energy resources to supply the energy needs in addition to wastewater treatment to satisfy the water demand. Moreover, hydrogen has become a promising energy carrier and green fuel to decarbonize the industrial and transportation sectors. In this context, this research investigates a wind-photovoltaic power plant to produce green hydrogen for hydrogen refueling station and to operate an electrocoagulation water treatment unit in Ostrava, Czech Republic's northeast region. The study conducts a techno-economic analysis through HOMER Pro® software for optimal sizing of the power station components and to investigate the economic indices of the plant. The power station employs photovoltaic panels and wind turbines to supply the required electricity for electrolyzers and electrocoagulation reactors. As an off-grid system, lead acid batteries are utilized to store the surplus electricity. Wind speed and solar irradiation are the key role site dependent parameters that determine the cost of hydrogen, electricity, and wastewater treatment. The simulated model considers the capital, operating, and replacement costs for system components. In the proposed system, 240 kg of hydrogen as well as 720 kWh electrical energy are daily required for the hydrogen refueling station and the electrocoagulation unit, respectively. Accordingly, the power station annually generates 6,997,990 kWh of electrical energy in addition to 85595 kg of green hydrogen. Based on the economic analysis, the project's NPC is determined to be €5.49 M and the levelized cost of Hydrogen (LCH) is 2.89 €/kg excluding compressor unit costs. This value proves the effectiveness of this power system, which encourages the utilization of green hydrogen for fuel-cell electric vehicles (FCVs). Furthermore, emerging electrocoagulation studies produce hydrogen through wastewater treatment, increasing hydrogen production and lowering LCH. Therefore, this study is able to provide practicable methodology support for optimal sizing of the power station components, which is beneficial for industrialization and economic development as well as transition toward sustainability and autonomous energy systems.
•Developing a fully islanded green hydrogen production system.•Coupling large-scale electrocoagulation and hydrogen loads in an offering model. .•Testing the model using the climatic conditions in one of the industrial cities in the Czech Republic.•Optimizatio |
---|---|
ISSN: | 2590-1230 2590-1230 |
DOI: | 10.1016/j.rineng.2024.102234 |