Loading…
Explanted Skull Flaps after Decompressive Hemicraniectomy Demonstrate Relevant Bone Avitality-Is Their Reimplantation Worth the Risk?
Background: Reimplantations of autologous skull flaps after decompressive hemicraniectomies (DHs) are associated with high rates of postoperative bone flap resorption (BFR). We histologically assessed the cell viability of explanted bone flaps in certain periods of time after DH, in order to conclud...
Saved in:
Published in: | Brain sciences 2023-09, Vol.13 (9), p.1277 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Reimplantations of autologous skull flaps after decompressive hemicraniectomies (DHs) are associated with high rates of postoperative bone flap resorption (BFR). We histologically assessed the cell viability of explanted bone flaps in certain periods of time after DH, in order to conclude whether precursors of BRF may be developed during their storage. Methods: Skull bone flaps explanted during a DH between 2019 and 2020 were stored in a freezer at either −23 °C or −80 °C. After their thawing process, the skulls were collected. Parameters of bone metabolism, namely PTH1 and OPG, were analyzed via immunohistochemistry. H&E stain was used to assess the degree of avital bone tissue, whereas the repeated assays were performed after 6 months. Results: A total of 17 stored skull flaps (8 at −23 °C; 9 at −80 °C) were analyzed. The duration of cryopreservation varied between 2 and 17 months. A relevant degree of bone avitality was observed in all skull flaps, which significantly increased at the repeated evaluation after 6 months (p < 0.001). Preservation at −23 °C (p = 0.006) as well as longer storage times (p < 0.001) were identified as prognostic factors for higher rates of bone avitality in a linear mixed regression model. Conclusions: Our novel finding shows a clear benefit from storage at −80° C, which should be carefully considered for the future management and storage of explanted skull flaps. Our analysis also further revealed a significant degree of bone avitality, a potential precursor of BFR, in skull flaps stored for several weeks. To this end, we should reconsider whether the reimplantation of autologous skull flaps instead of synthetic skull flaps is still justified. |
---|---|
ISSN: | 2076-3425 2076-3425 |
DOI: | 10.3390/brainsci13091277 |