Loading…

Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)

A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learn...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-09, Vol.15 (18), p.6569
Main Authors: Zhang, Hao, Wang, Wenlei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15186569