Loading…

Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4

The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-05, Vol.11 (18), p.e2307691-n/a
Main Authors: Zhang, Juan, Xia, Yujie, Peng, Lei, Zhang, Yiming, Li, Ben, Shu, Le, Cen, Yan, Zhuang, Jun, Zhu, Heyuan, Zhan, Peng, Zhang, Hao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 18
container_start_page e2307691
container_title Advanced science
container_volume 11
creator Zhang, Juan
Xia, Yujie
Peng, Lei
Zhang, Yiming
Li, Ben
Shu, Le
Cen, Yan
Zhuang, Jun
Zhu, Heyuan
Zhan, Peng
Zhang, Hao
description The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials. The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.
doi_str_mv 10.1002/advs.202307691
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46</doaj_id><sourcerecordid>3054810368</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713</originalsourceid><addsrcrecordid>eNpdks1uEzEUhUcIRKvQLeuR2LBJuf4bj1eoCi1UaqFSKCwtxz-pI8cOnpnA7HgEnpEnwUmqqmV1j67P_XR1farqNYJTBIDfKbPtTjFgArwR6Fl1jJFop6Sl9PkjfVSddN0KABAjnKL2ZXVU2ow2DI6r7W3os_r7-88sReejNfXNXYop1jcpqOz7FLtaRVPP-5ziMoz1LA2bUGzXXuek1db3Y33-S--cj2d8rK8LJ6jR5qLmHn-me9D3vXxVvXAqdPbkvk6q24vzr7NP06svHy9nZ1dTQxsspgqE08CxQ86CBbpA2IIyymluHLcYFLHAOWUCWIO01hwTZLSjxHLiOCKT6vLANUmt5Cb7tcqjTMrLfSPlpVS59zpYaTRWTaEqTDB1Rgm8IFwwxzlmdkGbwnp_YG2GxdoabWO5XHgCffoS_Z1cpq1ECARDTBTC23tCTj8G2_Vy7TttQ1DRpqGTWDDKObTlRyfVm_-sqzTkWG4lCTDaIiBNW1z04Prpgx0fVkEgd_mQu3zIh3zIsw_f5hwLQf4BufGwfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054810368</pqid></control><display><type>article</type><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</creator><creatorcontrib>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</creatorcontrib><description>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials. The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202307691</identifier><identifier>PMID: 38454650</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>2D materials ; Eigenvalues ; Energy ; excitons ; Graphene ; Optical properties ; polariton quantum condensate ; polaritons</subject><ispartof>Advanced science, 2024-05, Vol.11 (18), p.e2307691-n/a</ispartof><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8201-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3054810368/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3054810368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xia, Yujie</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Shu, Le</creatorcontrib><creatorcontrib>Cen, Yan</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Zhu, Heyuan</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><title>Advanced science</title><description>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials. The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</description><subject>2D materials</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>excitons</subject><subject>Graphene</subject><subject>Optical properties</subject><subject>polariton quantum condensate</subject><subject>polaritons</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEUhUcIRKvQLeuR2LBJuf4bj1eoCi1UaqFSKCwtxz-pI8cOnpnA7HgEnpEnwUmqqmV1j67P_XR1farqNYJTBIDfKbPtTjFgArwR6Fl1jJFop6Sl9PkjfVSddN0KABAjnKL2ZXVU2ow2DI6r7W3os_r7-88sReejNfXNXYop1jcpqOz7FLtaRVPP-5ziMoz1LA2bUGzXXuek1db3Y33-S--cj2d8rK8LJ6jR5qLmHn-me9D3vXxVvXAqdPbkvk6q24vzr7NP06svHy9nZ1dTQxsspgqE08CxQ86CBbpA2IIyymluHLcYFLHAOWUCWIO01hwTZLSjxHLiOCKT6vLANUmt5Cb7tcqjTMrLfSPlpVS59zpYaTRWTaEqTDB1Rgm8IFwwxzlmdkGbwnp_YG2GxdoabWO5XHgCffoS_Z1cpq1ECARDTBTC23tCTj8G2_Vy7TttQ1DRpqGTWDDKObTlRyfVm_-sqzTkWG4lCTDaIiBNW1z04Prpgx0fVkEgd_mQu3zIh3zIsw_f5hwLQf4BufGwfQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Juan</creator><creator>Xia, Yujie</creator><creator>Peng, Lei</creator><creator>Zhang, Yiming</creator><creator>Li, Ben</creator><creator>Shu, Le</creator><creator>Cen, Yan</creator><creator>Zhuang, Jun</creator><creator>Zhu, Heyuan</creator><creator>Zhan, Peng</creator><creator>Zhang, Hao</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8201-3272</orcidid></search><sort><creationdate>20240501</creationdate><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><author>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>excitons</topic><topic>Graphene</topic><topic>Optical properties</topic><topic>polariton quantum condensate</topic><topic>polaritons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xia, Yujie</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Shu, Le</creatorcontrib><creatorcontrib>Cen, Yan</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Zhu, Heyuan</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juan</au><au>Xia, Yujie</au><au>Peng, Lei</au><au>Zhang, Yiming</au><au>Li, Ben</au><au>Shu, Le</au><au>Cen, Yan</au><au>Zhuang, Jun</au><au>Zhu, Heyuan</au><au>Zhan, Peng</au><au>Zhang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</atitle><jtitle>Advanced science</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>11</volume><issue>18</issue><spage>e2307691</spage><epage>n/a</epage><pages>e2307691-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials. The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38454650</pmid><doi>10.1002/advs.202307691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8201-3272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-05, Vol.11 (18), p.e2307691-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects 2D materials
Eigenvalues
Energy
excitons
Graphene
Optical properties
polariton quantum condensate
polaritons
title Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90Confined%20Phonon%20Polaritons%20and%20Strongly%20Coupled%20Microcavity%20Exciton%20Polaritons%20in%20Monolayer%20MoSi2N4%20and%20WSi2N4&rft.jtitle=Advanced%20science&rft.au=Zhang,%20Juan&rft.date=2024-05-01&rft.volume=11&rft.issue=18&rft.spage=e2307691&rft.epage=n/a&rft.pages=e2307691-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202307691&rft_dat=%3Cproquest_doaj_%3E3054810368%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054810368&rft_id=info:pmid/38454650&rfr_iscdi=true