Loading…
Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4
The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated...
Saved in:
Published in: | Advanced science 2024-05, Vol.11 (18), p.e2307691-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 18 |
container_start_page | e2307691 |
container_title | Advanced science |
container_volume | 11 |
creator | Zhang, Juan Xia, Yujie Peng, Lei Zhang, Yiming Li, Ben Shu, Le Cen, Yan Zhuang, Jun Zhu, Heyuan Zhan, Peng Zhang, Hao |
description | The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials.
The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively. |
doi_str_mv | 10.1002/advs.202307691 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46</doaj_id><sourcerecordid>3054810368</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713</originalsourceid><addsrcrecordid>eNpdks1uEzEUhUcIRKvQLeuR2LBJuf4bj1eoCi1UaqFSKCwtxz-pI8cOnpnA7HgEnpEnwUmqqmV1j67P_XR1farqNYJTBIDfKbPtTjFgArwR6Fl1jJFop6Sl9PkjfVSddN0KABAjnKL2ZXVU2ow2DI6r7W3os_r7-88sReejNfXNXYop1jcpqOz7FLtaRVPP-5ziMoz1LA2bUGzXXuek1db3Y33-S--cj2d8rK8LJ6jR5qLmHn-me9D3vXxVvXAqdPbkvk6q24vzr7NP06svHy9nZ1dTQxsspgqE08CxQ86CBbpA2IIyymluHLcYFLHAOWUCWIO01hwTZLSjxHLiOCKT6vLANUmt5Cb7tcqjTMrLfSPlpVS59zpYaTRWTaEqTDB1Rgm8IFwwxzlmdkGbwnp_YG2GxdoabWO5XHgCffoS_Z1cpq1ECARDTBTC23tCTj8G2_Vy7TttQ1DRpqGTWDDKObTlRyfVm_-sqzTkWG4lCTDaIiBNW1z04Prpgx0fVkEgd_mQu3zIh3zIsw_f5hwLQf4BufGwfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054810368</pqid></control><display><type>article</type><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</creator><creatorcontrib>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</creatorcontrib><description>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials.
The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202307691</identifier><identifier>PMID: 38454650</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>2D materials ; Eigenvalues ; Energy ; excitons ; Graphene ; Optical properties ; polariton quantum condensate ; polaritons</subject><ispartof>Advanced science, 2024-05, Vol.11 (18), p.e2307691-n/a</ispartof><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8201-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3054810368/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3054810368?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xia, Yujie</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Shu, Le</creatorcontrib><creatorcontrib>Cen, Yan</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Zhu, Heyuan</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><title>Advanced science</title><description>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials.
The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</description><subject>2D materials</subject><subject>Eigenvalues</subject><subject>Energy</subject><subject>excitons</subject><subject>Graphene</subject><subject>Optical properties</subject><subject>polariton quantum condensate</subject><subject>polaritons</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEUhUcIRKvQLeuR2LBJuf4bj1eoCi1UaqFSKCwtxz-pI8cOnpnA7HgEnpEnwUmqqmV1j67P_XR1farqNYJTBIDfKbPtTjFgArwR6Fl1jJFop6Sl9PkjfVSddN0KABAjnKL2ZXVU2ow2DI6r7W3os_r7-88sReejNfXNXYop1jcpqOz7FLtaRVPP-5ziMoz1LA2bUGzXXuek1db3Y33-S--cj2d8rK8LJ6jR5qLmHn-me9D3vXxVvXAqdPbkvk6q24vzr7NP06svHy9nZ1dTQxsspgqE08CxQ86CBbpA2IIyymluHLcYFLHAOWUCWIO01hwTZLSjxHLiOCKT6vLANUmt5Cb7tcqjTMrLfSPlpVS59zpYaTRWTaEqTDB1Rgm8IFwwxzlmdkGbwnp_YG2GxdoabWO5XHgCffoS_Z1cpq1ECARDTBTC23tCTj8G2_Vy7TttQ1DRpqGTWDDKObTlRyfVm_-sqzTkWG4lCTDaIiBNW1z04Prpgx0fVkEgd_mQu3zIh3zIsw_f5hwLQf4BufGwfQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Juan</creator><creator>Xia, Yujie</creator><creator>Peng, Lei</creator><creator>Zhang, Yiming</creator><creator>Li, Ben</creator><creator>Shu, Le</creator><creator>Cen, Yan</creator><creator>Zhuang, Jun</creator><creator>Zhu, Heyuan</creator><creator>Zhan, Peng</creator><creator>Zhang, Hao</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8201-3272</orcidid></search><sort><creationdate>20240501</creationdate><title>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</title><author>Zhang, Juan ; Xia, Yujie ; Peng, Lei ; Zhang, Yiming ; Li, Ben ; Shu, Le ; Cen, Yan ; Zhuang, Jun ; Zhu, Heyuan ; Zhan, Peng ; Zhang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Eigenvalues</topic><topic>Energy</topic><topic>excitons</topic><topic>Graphene</topic><topic>Optical properties</topic><topic>polariton quantum condensate</topic><topic>polaritons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Xia, Yujie</creatorcontrib><creatorcontrib>Peng, Lei</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Shu, Le</creatorcontrib><creatorcontrib>Cen, Yan</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Zhu, Heyuan</creatorcontrib><creatorcontrib>Zhan, Peng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juan</au><au>Xia, Yujie</au><au>Peng, Lei</au><au>Zhang, Yiming</au><au>Li, Ben</au><au>Shu, Le</au><au>Cen, Yan</au><au>Zhuang, Jun</au><au>Zhu, Heyuan</au><au>Zhan, Peng</au><au>Zhang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4</atitle><jtitle>Advanced science</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>11</volume><issue>18</issue><spage>e2307691</spage><epage>n/a</epage><pages>e2307691-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials.
The phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around 105 and 103, and the Rabi splittings of the formed cavity‐exciton polaritons reach 373 and 321 meV, respectively.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><pmid>38454650</pmid><doi>10.1002/advs.202307691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8201-3272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-05, Vol.11 (18), p.e2307691-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dc2a6df7a2324fda92b3795f7725eb46 |
source | Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central |
subjects | 2D materials Eigenvalues Energy excitons Graphene Optical properties polariton quantum condensate polaritons |
title | Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90Confined%20Phonon%20Polaritons%20and%20Strongly%20Coupled%20Microcavity%20Exciton%20Polaritons%20in%20Monolayer%20MoSi2N4%20and%20WSi2N4&rft.jtitle=Advanced%20science&rft.au=Zhang,%20Juan&rft.date=2024-05-01&rft.volume=11&rft.issue=18&rft.spage=e2307691&rft.epage=n/a&rft.pages=e2307691-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202307691&rft_dat=%3Cproquest_doaj_%3E3054810368%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4629-a09fc072f1fe0e04b12e0adafc7df7e20a3e0774590561ccc7231dcf43e73f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054810368&rft_id=info:pmid/38454650&rfr_iscdi=true |