Loading…

Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle

Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continua...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-11, Vol.20 (23), p.6777
Main Authors: Shieh, Jeng-Lun, Haq, Qazi Mazhar Ul, Haq, Muhamad Amirul, Karam, Said, Chondro, Peter, Gao, De-Qin, Ruan, Shanq-Jang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233
cites cdi_FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233
container_end_page
container_issue 23
container_start_page 6777
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Shieh, Jeng-Lun
Haq, Qazi Mazhar Ul
Haq, Muhamad Amirul
Karam, Said
Chondro, Peter
Gao, De-Qin
Ruan, Shanq-Jang
description Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continual learning for object detection essentially ensure a robust adaptation of a model to detect additional classes on the fly. This study proposes a novel continual learning method for object detection that learns new object class(es) along with cumulative memory of classes from prior learning rounds to avoid any catastrophic forgetting. The results of PASCAL VOC 2007 have suggested that the proposed ER method obtains 4.3% of mAP drop compared against the all-classes learning, which is the lowest amongst other prior arts.
doi_str_mv 10.3390/s20236777
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dc8ebc54cda747738721eaecb43e1970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dc8ebc54cda747738721eaecb43e1970</doaj_id><sourcerecordid>2465954140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBX7PiCVLYtVFppJQpcLceZpF6y9tZxCnvgv-OwZdVyGst-9Mzr0RTFS4LfMabw-5FiyoSU8lFxTDjlZU0pfnzvfFQ8G8c1zhRj9dPiiDEqcC34cfF7EXxyfjIDWoKJ3vkeXaVoEvQ75DxaeSivkukBrZo12ITOIOXigkcX0WzgZ4g_0EczQovy1fmvLUQH3gL6AtvB7FAXIjqdUvBhE6YRnUV3O7f4DtfODvC8eNKZYYQXd_Wk-HZx_nXxuVyuPl0uTpel5UKlkjWdVTXmUjZYcForaFtWS8BKVgpsxRqsRNsKqbqGYJBU1pYJRVhTE1HlT58Ul3tvG8xab6PbmLjTwTj99yLEXpuY5kS6tTU0tuK2NTI3zG0oAQO24QyIkji7Puxd26nZQGvB53END6QPX7y71n241VmGJeFZ8OZOEMPNBGPSGzdaGAbjIc9IUy4EVVQKkdHX_6HrMEWfRzVTlao44XOit3vKxjCOEbpDGIL1vCD6sCCZfXU__YH8txHsDzAHtf0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465954140</pqid></control><display><type>article</type><title>Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Shieh, Jeng-Lun ; Haq, Qazi Mazhar Ul ; Haq, Muhamad Amirul ; Karam, Said ; Chondro, Peter ; Gao, De-Qin ; Ruan, Shanq-Jang</creator><creatorcontrib>Shieh, Jeng-Lun ; Haq, Qazi Mazhar Ul ; Haq, Muhamad Amirul ; Karam, Said ; Chondro, Peter ; Gao, De-Qin ; Ruan, Shanq-Jang</creatorcontrib><description>Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continual learning for object detection essentially ensure a robust adaptation of a model to detect additional classes on the fly. This study proposes a novel continual learning method for object detection that learns new object class(es) along with cumulative memory of classes from prior learning rounds to avoid any catastrophic forgetting. The results of PASCAL VOC 2007 have suggested that the proposed ER method obtains 4.3% of mAP drop compared against the all-classes learning, which is the lowest amongst other prior arts.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20236777</identifier><identifier>PMID: 33260864</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>autonomous driving vehicles ; Classification ; continual learning ; Datasets ; Deep learning ; Knowledge ; Neural networks ; one-stage object detection ; Proposals ; Vehicles</subject><ispartof>Sensors (Basel, Switzerland), 2020-11, Vol.20 (23), p.6777</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233</citedby><cites>FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233</cites><orcidid>0000-0003-1516-0229 ; 0000-0002-9770-026X ; 0000-0002-8129-4623 ; 0000-0002-5198-0550 ; 0000-0002-1302-7689 ; 0000-0003-1075-8512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2465954140/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2465954140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33260864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shieh, Jeng-Lun</creatorcontrib><creatorcontrib>Haq, Qazi Mazhar Ul</creatorcontrib><creatorcontrib>Haq, Muhamad Amirul</creatorcontrib><creatorcontrib>Karam, Said</creatorcontrib><creatorcontrib>Chondro, Peter</creatorcontrib><creatorcontrib>Gao, De-Qin</creatorcontrib><creatorcontrib>Ruan, Shanq-Jang</creatorcontrib><title>Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continual learning for object detection essentially ensure a robust adaptation of a model to detect additional classes on the fly. This study proposes a novel continual learning method for object detection that learns new object class(es) along with cumulative memory of classes from prior learning rounds to avoid any catastrophic forgetting. The results of PASCAL VOC 2007 have suggested that the proposed ER method obtains 4.3% of mAP drop compared against the all-classes learning, which is the lowest amongst other prior arts.</description><subject>autonomous driving vehicles</subject><subject>Classification</subject><subject>continual learning</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Knowledge</subject><subject>Neural networks</subject><subject>one-stage object detection</subject><subject>Proposals</subject><subject>Vehicles</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgEPBX7PiCVLYtVFppJQpcLceZpF6y9tZxCnvgv-OwZdVyGst-9Mzr0RTFS4LfMabw-5FiyoSU8lFxTDjlZU0pfnzvfFQ8G8c1zhRj9dPiiDEqcC34cfF7EXxyfjIDWoKJ3vkeXaVoEvQ75DxaeSivkukBrZo12ITOIOXigkcX0WzgZ4g_0EczQovy1fmvLUQH3gL6AtvB7FAXIjqdUvBhE6YRnUV3O7f4DtfODvC8eNKZYYQXd_Wk-HZx_nXxuVyuPl0uTpel5UKlkjWdVTXmUjZYcForaFtWS8BKVgpsxRqsRNsKqbqGYJBU1pYJRVhTE1HlT58Ul3tvG8xab6PbmLjTwTj99yLEXpuY5kS6tTU0tuK2NTI3zG0oAQO24QyIkji7Puxd26nZQGvB53END6QPX7y71n241VmGJeFZ8OZOEMPNBGPSGzdaGAbjIc9IUy4EVVQKkdHX_6HrMEWfRzVTlao44XOit3vKxjCOEbpDGIL1vCD6sCCZfXU__YH8txHsDzAHtf0</recordid><startdate>20201127</startdate><enddate>20201127</enddate><creator>Shieh, Jeng-Lun</creator><creator>Haq, Qazi Mazhar Ul</creator><creator>Haq, Muhamad Amirul</creator><creator>Karam, Said</creator><creator>Chondro, Peter</creator><creator>Gao, De-Qin</creator><creator>Ruan, Shanq-Jang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1516-0229</orcidid><orcidid>https://orcid.org/0000-0002-9770-026X</orcidid><orcidid>https://orcid.org/0000-0002-8129-4623</orcidid><orcidid>https://orcid.org/0000-0002-5198-0550</orcidid><orcidid>https://orcid.org/0000-0002-1302-7689</orcidid><orcidid>https://orcid.org/0000-0003-1075-8512</orcidid></search><sort><creationdate>20201127</creationdate><title>Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle</title><author>Shieh, Jeng-Lun ; Haq, Qazi Mazhar Ul ; Haq, Muhamad Amirul ; Karam, Said ; Chondro, Peter ; Gao, De-Qin ; Ruan, Shanq-Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>autonomous driving vehicles</topic><topic>Classification</topic><topic>continual learning</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Knowledge</topic><topic>Neural networks</topic><topic>one-stage object detection</topic><topic>Proposals</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shieh, Jeng-Lun</creatorcontrib><creatorcontrib>Haq, Qazi Mazhar Ul</creatorcontrib><creatorcontrib>Haq, Muhamad Amirul</creatorcontrib><creatorcontrib>Karam, Said</creatorcontrib><creatorcontrib>Chondro, Peter</creatorcontrib><creatorcontrib>Gao, De-Qin</creatorcontrib><creatorcontrib>Ruan, Shanq-Jang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shieh, Jeng-Lun</au><au>Haq, Qazi Mazhar Ul</au><au>Haq, Muhamad Amirul</au><au>Karam, Said</au><au>Chondro, Peter</au><au>Gao, De-Qin</au><au>Ruan, Shanq-Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-11-27</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>6777</spage><pages>6777-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Object detection is an important aspect for autonomous driving vehicles (ADV), which may comprise of a machine learning model that detects a range of classes. As the deployment of ADV widens globally, the variety of objects to be detected may increase beyond the designated range of classes. Continual learning for object detection essentially ensure a robust adaptation of a model to detect additional classes on the fly. This study proposes a novel continual learning method for object detection that learns new object class(es) along with cumulative memory of classes from prior learning rounds to avoid any catastrophic forgetting. The results of PASCAL VOC 2007 have suggested that the proposed ER method obtains 4.3% of mAP drop compared against the all-classes learning, which is the lowest amongst other prior arts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33260864</pmid><doi>10.3390/s20236777</doi><orcidid>https://orcid.org/0000-0003-1516-0229</orcidid><orcidid>https://orcid.org/0000-0002-9770-026X</orcidid><orcidid>https://orcid.org/0000-0002-8129-4623</orcidid><orcidid>https://orcid.org/0000-0002-5198-0550</orcidid><orcidid>https://orcid.org/0000-0002-1302-7689</orcidid><orcidid>https://orcid.org/0000-0003-1075-8512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-11, Vol.20 (23), p.6777
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dc8ebc54cda747738721eaecb43e1970
source Publicly Available Content Database; PubMed Central
subjects autonomous driving vehicles
Classification
continual learning
Datasets
Deep learning
Knowledge
Neural networks
one-stage object detection
Proposals
Vehicles
title Continual Learning Strategy in One-Stage Object Detection Framework Based on Experience Replay for Autonomous Driving Vehicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continual%20Learning%20Strategy%20in%20One-Stage%20Object%20Detection%20Framework%20Based%20on%20Experience%20Replay%20for%20Autonomous%20Driving%20Vehicle&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Shieh,%20Jeng-Lun&rft.date=2020-11-27&rft.volume=20&rft.issue=23&rft.spage=6777&rft.pages=6777-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20236777&rft_dat=%3Cproquest_doaj_%3E2465954140%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-3bfc980477b064289edd387e09759ec53b096dd679fb10e7278c36913b8165233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465954140&rft_id=info:pmid/33260864&rfr_iscdi=true