Loadingā€¦

Spatial and temporal scales of exposure and sensitivity drive mortality risk patterns across life stages

Impacts of increases in extreme heat events under climate change may differ across ontogeny for species with complex life cycles. Different life stages may (1) experience unequal levels of environmental stress that vary across space and time (exposure) and (2) have different stress tolerances (sensi...

Full description

Saved in:
Bibliographic Details
Published in:Ecosphere (Washington, D.C) D.C), 2021-06, Vol.12 (6), p.n/a
Main Authors: Pandori, Lauren L. M., Sorte, Cascade J. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Impacts of increases in extreme heat events under climate change may differ across ontogeny for species with complex life cycles. Different life stages may (1) experience unequal levels of environmental stress that vary across space and time (exposure) and (2) have different stress tolerances (sensitivity). We used a field experiment to investigate whether exposure, sensitivity, and overall mortality risk differed between life stages of a marine foundation species (the mussel Mytilus californianus) across thermal conditions that vary in space (habitat, elevation, and site) and time (season) in southern California, USA. We deployed temperature loggers to document habitatā€specific exposure patterns, conducted laboratory thermal tolerance assays to calculate sensitivity, and performed field surveys to determine whether risk patterns were reflected in distributions. Exposure to extreme temperatures was highest in solitary habitats and during spring. Juvenile mussels were more sensitive to extreme heat than adults, and sensitivity for both life stages was highest in December and March. Risk was largely seasonal for juveniles but was more temporally variable for adults. Spatial occurrence patterns were congruent with risk assessments for both life stages (i.e., higher occurrence in lower risk habitats). These results highlight the importance of incorporating life stage and temporal dynamics when predicting impacts of climate change.
ISSN:2150-8925
2150-8925
DOI:10.1002/ecs2.3552