Loading…
Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder
P/Q-type Ca 2+ currents mediated by Ca V 2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in CACNA1A , the gene encoding the principal Ca V 2.1 α 1A subunit, cause a broad spectrum of neurological disorders. Typically, gai...
Saved in:
Published in: | Scientific reports 2022-06, Vol.12 (1), p.9186-9186, Article 9186 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3 |
container_end_page | 9186 |
container_issue | 1 |
container_start_page | 9186 |
container_title | Scientific reports |
container_volume | 12 |
creator | Grosso, Benjamin J. Kramer, Audra A. Tyagi, Sidharth Bennett, Daniel F. Tifft, Cynthia J. D’Souza, Precilla Wangler, Michael F. Macnamara, Ellen F. Meza, Ulises Bannister, Roger A. |
description | P/Q-type Ca
2+
currents mediated by Ca
V
2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in
CACNA1A
, the gene encoding the principal Ca
V
2.1 α
1A
subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe Ca
V
2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca
2+
current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca
2+
flux during action potential-like stimuli. However, the integrated Ca
2+
fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in Ca
V
2.1 may not represent exclusively GOF or LOF. |
doi_str_mv | 10.1038/s41598-022-12789-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dcb8f1d708834618b720d6b36eaa5a9b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dcb8f1d708834618b720d6b36eaa5a9b</doaj_id><sourcerecordid>2673357804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-BkiQuXFH_buSCtIj4qVXABrtbEnuxmlY0XOynk3-N2K6Ac8MWW55lHHuutqpeMXjEq7JssmWpsTTmvGTe2qdcn1TmnUtVccP70r_NZdZnznpaleCNZ87w6E0orRQ09r9Y2Ho4j_iTY9-jnTOJEWvjGrxjxO5gmHMkW5mHaEg9LxkC6lQBpN-2nDduQW0gDTDOBnKMfYC71H8O8K0TGW0xIJlxSDOU8xuMBpxlGEoYcU8D0onrWw5jx8mG_qL6-f_el_VjffP5w3W5uai8FX-ugAlNSA1ddCH3TqTKsVhwpBtkLw5gPHTNdb7VuwAquDEgptfWqZ9YGLy6q65M3RNi7YxoOkFYXYXD3FzFtHaR58CO64Dvbs2CotUJqZjvDadCd0AigoOmK6-3JdVy6AwZfJkowPpI-rkzDzm3jrWuYFtSYInj9IEjx-4J5dochexxHmDAu2XFthFDGUlnQV_-g-7ikqXzVHcWltUbwQvET5VPMOWH_-zGMuruguFNQXAmKuw-KW0uTODXlAk9bTH_U_-n6BfA5v-I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672488732</pqid></control><display><type>article</type><title>Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Grosso, Benjamin J. ; Kramer, Audra A. ; Tyagi, Sidharth ; Bennett, Daniel F. ; Tifft, Cynthia J. ; D’Souza, Precilla ; Wangler, Michael F. ; Macnamara, Ellen F. ; Meza, Ulises ; Bannister, Roger A.</creator><creatorcontrib>Grosso, Benjamin J. ; Kramer, Audra A. ; Tyagi, Sidharth ; Bennett, Daniel F. ; Tifft, Cynthia J. ; D’Souza, Precilla ; Wangler, Michael F. ; Macnamara, Ellen F. ; Meza, Ulises ; Bannister, Roger A.</creatorcontrib><description>P/Q-type Ca
2+
currents mediated by Ca
V
2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in
CACNA1A
, the gene encoding the principal Ca
V
2.1 α
1A
subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe Ca
V
2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca
2+
current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca
2+
flux during action potential-like stimuli. However, the integrated Ca
2+
fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in Ca
V
2.1 may not represent exclusively GOF or LOF.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-12789-y</identifier><identifier>PMID: 35655070</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689 ; 631/378/2586 ; Action potential ; Ataxia ; Calcium channels (P/Q-type) ; Calcium channels (Q-type) ; Calcium channels (voltage-gated) ; Channel gating ; Congenital diseases ; Deactivation ; Edema ; Epilepsy ; Headache ; Humanities and Social Sciences ; Kinetics ; Migraine ; Missense mutation ; multidisciplinary ; Mutation ; Neurodevelopmental disorders ; Neurological diseases ; Neuromuscular junctions ; Neurotransmitter release ; Science ; Science (multidisciplinary) ; Seizures ; Synapses</subject><ispartof>Scientific reports, 2022-06, Vol.12 (1), p.9186-9186, Article 9186</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3</citedby><cites>FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2672488732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2672488732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Grosso, Benjamin J.</creatorcontrib><creatorcontrib>Kramer, Audra A.</creatorcontrib><creatorcontrib>Tyagi, Sidharth</creatorcontrib><creatorcontrib>Bennett, Daniel F.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>D’Souza, Precilla</creatorcontrib><creatorcontrib>Wangler, Michael F.</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Meza, Ulises</creatorcontrib><creatorcontrib>Bannister, Roger A.</creatorcontrib><title>Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>P/Q-type Ca
2+
currents mediated by Ca
V
2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in
CACNA1A
, the gene encoding the principal Ca
V
2.1 α
1A
subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe Ca
V
2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca
2+
current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca
2+
flux during action potential-like stimuli. However, the integrated Ca
2+
fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in Ca
V
2.1 may not represent exclusively GOF or LOF.</description><subject>631/378/1689</subject><subject>631/378/2586</subject><subject>Action potential</subject><subject>Ataxia</subject><subject>Calcium channels (P/Q-type)</subject><subject>Calcium channels (Q-type)</subject><subject>Calcium channels (voltage-gated)</subject><subject>Channel gating</subject><subject>Congenital diseases</subject><subject>Deactivation</subject><subject>Edema</subject><subject>Epilepsy</subject><subject>Headache</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Migraine</subject><subject>Missense mutation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neurodevelopmental disorders</subject><subject>Neurological diseases</subject><subject>Neuromuscular junctions</subject><subject>Neurotransmitter release</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seizures</subject><subject>Synapses</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-BkiQuXFH_buSCtIj4qVXABrtbEnuxmlY0XOynk3-N2K6Ac8MWW55lHHuutqpeMXjEq7JssmWpsTTmvGTe2qdcn1TmnUtVccP70r_NZdZnznpaleCNZ87w6E0orRQ09r9Y2Ho4j_iTY9-jnTOJEWvjGrxjxO5gmHMkW5mHaEg9LxkC6lQBpN-2nDduQW0gDTDOBnKMfYC71H8O8K0TGW0xIJlxSDOU8xuMBpxlGEoYcU8D0onrWw5jx8mG_qL6-f_el_VjffP5w3W5uai8FX-ugAlNSA1ddCH3TqTKsVhwpBtkLw5gPHTNdb7VuwAquDEgptfWqZ9YGLy6q65M3RNi7YxoOkFYXYXD3FzFtHaR58CO64Dvbs2CotUJqZjvDadCd0AigoOmK6-3JdVy6AwZfJkowPpI-rkzDzm3jrWuYFtSYInj9IEjx-4J5dochexxHmDAu2XFthFDGUlnQV_-g-7ikqXzVHcWltUbwQvET5VPMOWH_-zGMuruguFNQXAmKuw-KW0uTODXlAk9bTH_U_-n6BfA5v-I</recordid><startdate>20220602</startdate><enddate>20220602</enddate><creator>Grosso, Benjamin J.</creator><creator>Kramer, Audra A.</creator><creator>Tyagi, Sidharth</creator><creator>Bennett, Daniel F.</creator><creator>Tifft, Cynthia J.</creator><creator>D’Souza, Precilla</creator><creator>Wangler, Michael F.</creator><creator>Macnamara, Ellen F.</creator><creator>Meza, Ulises</creator><creator>Bannister, Roger A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220602</creationdate><title>Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder</title><author>Grosso, Benjamin J. ; Kramer, Audra A. ; Tyagi, Sidharth ; Bennett, Daniel F. ; Tifft, Cynthia J. ; D’Souza, Precilla ; Wangler, Michael F. ; Macnamara, Ellen F. ; Meza, Ulises ; Bannister, Roger A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/1689</topic><topic>631/378/2586</topic><topic>Action potential</topic><topic>Ataxia</topic><topic>Calcium channels (P/Q-type)</topic><topic>Calcium channels (Q-type)</topic><topic>Calcium channels (voltage-gated)</topic><topic>Channel gating</topic><topic>Congenital diseases</topic><topic>Deactivation</topic><topic>Edema</topic><topic>Epilepsy</topic><topic>Headache</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Migraine</topic><topic>Missense mutation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neurodevelopmental disorders</topic><topic>Neurological diseases</topic><topic>Neuromuscular junctions</topic><topic>Neurotransmitter release</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seizures</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosso, Benjamin J.</creatorcontrib><creatorcontrib>Kramer, Audra A.</creatorcontrib><creatorcontrib>Tyagi, Sidharth</creatorcontrib><creatorcontrib>Bennett, Daniel F.</creatorcontrib><creatorcontrib>Tifft, Cynthia J.</creatorcontrib><creatorcontrib>D’Souza, Precilla</creatorcontrib><creatorcontrib>Wangler, Michael F.</creatorcontrib><creatorcontrib>Macnamara, Ellen F.</creatorcontrib><creatorcontrib>Meza, Ulises</creatorcontrib><creatorcontrib>Bannister, Roger A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosso, Benjamin J.</au><au>Kramer, Audra A.</au><au>Tyagi, Sidharth</au><au>Bennett, Daniel F.</au><au>Tifft, Cynthia J.</au><au>D’Souza, Precilla</au><au>Wangler, Michael F.</au><au>Macnamara, Ellen F.</au><au>Meza, Ulises</au><au>Bannister, Roger A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-06-02</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>9186</spage><epage>9186</epage><pages>9186-9186</pages><artnum>9186</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>P/Q-type Ca
2+
currents mediated by Ca
V
2.1 channels are essential for active neurotransmitter release at neuromuscular junctions and many central synapses. Mutations in
CACNA1A
, the gene encoding the principal Ca
V
2.1 α
1A
subunit, cause a broad spectrum of neurological disorders. Typically, gain-of-function (GOF) mutations are associated with migraine and epilepsy while loss-of-function (LOF) mutations are causative for episodic and congenital ataxias. However, a cluster of severe Ca
V
2.1 channelopathies have overlapping presentations which suggests that channel dysfunction in these disorders cannot always be defined bimodally as GOF or LOF. In particular, the R1667P mutation causes focal seizures, generalized hypotonia, dysarthria, congenital ataxia and, in one case, cerebral edema leading ultimately to death. Here, we demonstrate that the R1667P mutation causes both channel GOF (hyperpolarizing voltage-dependence of activation, slowed deactivation) and LOF (slowed activation kinetics) when expressed heterologously in tsA-201 cells. We also observed a substantial reduction in Ca
2+
current density in this heterologous system. These changes in channel gating and availability/expression manifested in diminished Ca
2+
flux during action potential-like stimuli. However, the integrated Ca
2+
fluxes were no different when normalized to tail current amplitude measured upon repolarization from the reversal potential. In summary, our findings indicate a complex functional effect of R1667P and support the idea that pathological missense mutations in Ca
V
2.1 may not represent exclusively GOF or LOF.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35655070</pmid><doi>10.1038/s41598-022-12789-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-06, Vol.12 (1), p.9186-9186, Article 9186 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dcb8f1d708834618b720d6b36eaa5a9b |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1689 631/378/2586 Action potential Ataxia Calcium channels (P/Q-type) Calcium channels (Q-type) Calcium channels (voltage-gated) Channel gating Congenital diseases Deactivation Edema Epilepsy Headache Humanities and Social Sciences Kinetics Migraine Missense mutation multidisciplinary Mutation Neurodevelopmental disorders Neurological diseases Neuromuscular junctions Neurotransmitter release Science Science (multidisciplinary) Seizures Synapses |
title | Complex effects on CaV2.1 channel gating caused by a CACNA1A variant associated with a severe neurodevelopmental disorder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20effects%20on%20CaV2.1%20channel%20gating%20caused%20by%20a%20CACNA1A%20variant%20associated%20with%20a%20severe%20neurodevelopmental%20disorder&rft.jtitle=Scientific%20reports&rft.au=Grosso,%20Benjamin%20J.&rft.date=2022-06-02&rft.volume=12&rft.issue=1&rft.spage=9186&rft.epage=9186&rft.pages=9186-9186&rft.artnum=9186&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-12789-y&rft_dat=%3Cproquest_doaj_%3E2673357804%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432y-d5d1546a25bddf9b5278652e0ed4f3711cdb17bf8669a83257a44468c5f188dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672488732&rft_id=info:pmid/35655070&rfr_iscdi=true |