Loading…

Theoretical Insight into the Reaction Mechanism and Kinetics for the Criegee Intermediate of anti-PhCHOO with SO2

In this study, the density functional theory (DFT) and CCSD(T) method have been performed to gain insight into the possible products and detailed reaction mechanism of the Criegee intermediate (CI) of anti-PhCHOO with SO2 for the first time. The potential energy surfaces (PESs) have been depicted at...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2020-07, Vol.25 (13), p.3041
Main Authors: Du, Benni, Zhang, Weichao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the density functional theory (DFT) and CCSD(T) method have been performed to gain insight into the possible products and detailed reaction mechanism of the Criegee intermediate (CI) of anti-PhCHOO with SO2 for the first time. The potential energy surfaces (PESs) have been depicted at the UCCSD(T)/6-311++G(d,p)//UB3LYP/6-311++G(d,p) levels of theory with ZPE correction. Two different five-membered ring adducts, viz., endo PhCHOOS(O)O (IM1) and exo PhCHOOS(O)O (IM2) have been found in the entrance of reaction channels. Both direct and indirect reaction pathways from IM1 and IM2 have been considered for the title reaction. Our calculations show that the formation of PhCHO+SO3 (P1) via indirect reaction pathways from IM1 is predominant in all the pathways, and the production of P1 via direct dissociation pathway of IM1 and indirect reaction pathways of IM2 cannot be neglected. Moreover, PhCOOH+SO2 (P2) initiated from IM2 is identified as the minor product. According to the kinetic calculation, the total rate constant for the anti-PhCHOO+SO2 reaction is estimated to be 6.98 × 10−10 cm3·molecule−1·s−1 at 298 K.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25133041