Loading…
An adaptive brain actuated system for augmenting rehabilitation
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization th...
Saved in:
Published in: | Frontiers in neuroscience 2014-12, Vol.8, p.415-415 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303 |
container_end_page | 415 |
container_issue | |
container_start_page | 415 |
container_title | Frontiers in neuroscience |
container_volume | 8 |
creator | Roset, Scott A Gant, Katie Prasad, Abhishek Sanchez, Justin C |
description | For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. |
doi_str_mv | 10.3389/fnins.2014.00415 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce</doaj_id><sourcerecordid>1647010443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</originalsourceid><addsrcrecordid>eNqNkj1vFDEQhlcIRD6gp0Ir0dDc4fHnugFFEYRIkWhAorPs9ezFp931YXsj5d_j3IUToaKyPfPOo5nx2zRvgKwZ6_SHYQ5zXlMCfE0IB_GsOQUp6YoL9vP58c67k-Ys5y0hknacvmxOqBBSaC5Om08Xc2u93ZVwh61LNtRnXxZb0Lf5Phec2iGm1i6bCecS5k2b8Na6MIZiS4jzq-bFYMeMrx_P8-bHl8_fL7-ubr5dXV9e3Kx6QVlZgUInoNOeD4Jz6oRHwRV1QFB7MnghuUflvHTgGCipGcNOI-k7AmAZYefN9YHro92aXQqTTfcm2mD2gZg2xqYS-hGN90QN3iovVMe17S0IPoAeELRjqsfK-nhg7RY3oe_rYMmOT6BPM3O4NZt4ZziVXBBWAe8fASn-WjAXM4Xc4zjaGeOSDUiuCBDO_0ta24T6IVX67h_pNi5prls1lBFBNFMKqoocVH2KOSccjn0DMQ-mMHtTmAdTmL0pasnbv-c9FvxxAfsNte6zSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305093771</pqid></control><display><type>article</type><title>An adaptive brain actuated system for augmenting rehabilitation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</creator><creatorcontrib>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</creatorcontrib><description>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2014.00415</identifier><identifier>PMID: 25565945</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Arm ; Brain ; Brain-computer interface ; Computer applications ; Cortex (motor) ; Electrical stimuli ; Electroencephalography ; Error-related potentials ; Implants ; Interfaces ; Neurology ; Neurorehabilitation ; Neuroscience ; Paralysis ; Quality of life ; Recovery of function ; Rehabilitation ; reinforcement learning ; Spinal Cord Injuries ; Stroke ; Traumatic brain injury</subject><ispartof>Frontiers in neuroscience, 2014-12, Vol.8, p.415-415</ispartof><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014 Roset, Gant, Prasad and Sanchez. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</citedby><cites>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2305093771/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2305093771?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25565945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roset, Scott A</creatorcontrib><creatorcontrib>Gant, Katie</creatorcontrib><creatorcontrib>Prasad, Abhishek</creatorcontrib><creatorcontrib>Sanchez, Justin C</creatorcontrib><title>An adaptive brain actuated system for augmenting rehabilitation</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</description><subject>Arm</subject><subject>Brain</subject><subject>Brain-computer interface</subject><subject>Computer applications</subject><subject>Cortex (motor)</subject><subject>Electrical stimuli</subject><subject>Electroencephalography</subject><subject>Error-related potentials</subject><subject>Implants</subject><subject>Interfaces</subject><subject>Neurology</subject><subject>Neurorehabilitation</subject><subject>Neuroscience</subject><subject>Paralysis</subject><subject>Quality of life</subject><subject>Recovery of function</subject><subject>Rehabilitation</subject><subject>reinforcement learning</subject><subject>Spinal Cord Injuries</subject><subject>Stroke</subject><subject>Traumatic brain injury</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkj1vFDEQhlcIRD6gp0Ir0dDc4fHnugFFEYRIkWhAorPs9ezFp931YXsj5d_j3IUToaKyPfPOo5nx2zRvgKwZ6_SHYQ5zXlMCfE0IB_GsOQUp6YoL9vP58c67k-Ys5y0hknacvmxOqBBSaC5Om08Xc2u93ZVwh61LNtRnXxZb0Lf5Phec2iGm1i6bCecS5k2b8Na6MIZiS4jzq-bFYMeMrx_P8-bHl8_fL7-ubr5dXV9e3Kx6QVlZgUInoNOeD4Jz6oRHwRV1QFB7MnghuUflvHTgGCipGcNOI-k7AmAZYefN9YHro92aXQqTTfcm2mD2gZg2xqYS-hGN90QN3iovVMe17S0IPoAeELRjqsfK-nhg7RY3oe_rYMmOT6BPM3O4NZt4ZziVXBBWAe8fASn-WjAXM4Xc4zjaGeOSDUiuCBDO_0ta24T6IVX67h_pNi5prls1lBFBNFMKqoocVH2KOSccjn0DMQ-mMHtTmAdTmL0pasnbv-c9FvxxAfsNte6zSw</recordid><startdate>20141212</startdate><enddate>20141212</enddate><creator>Roset, Scott A</creator><creator>Gant, Katie</creator><creator>Prasad, Abhishek</creator><creator>Sanchez, Justin C</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141212</creationdate><title>An adaptive brain actuated system for augmenting rehabilitation</title><author>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arm</topic><topic>Brain</topic><topic>Brain-computer interface</topic><topic>Computer applications</topic><topic>Cortex (motor)</topic><topic>Electrical stimuli</topic><topic>Electroencephalography</topic><topic>Error-related potentials</topic><topic>Implants</topic><topic>Interfaces</topic><topic>Neurology</topic><topic>Neurorehabilitation</topic><topic>Neuroscience</topic><topic>Paralysis</topic><topic>Quality of life</topic><topic>Recovery of function</topic><topic>Rehabilitation</topic><topic>reinforcement learning</topic><topic>Spinal Cord Injuries</topic><topic>Stroke</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roset, Scott A</creatorcontrib><creatorcontrib>Gant, Katie</creatorcontrib><creatorcontrib>Prasad, Abhishek</creatorcontrib><creatorcontrib>Sanchez, Justin C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roset, Scott A</au><au>Gant, Katie</au><au>Prasad, Abhishek</au><au>Sanchez, Justin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive brain actuated system for augmenting rehabilitation</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2014-12-12</date><risdate>2014</risdate><volume>8</volume><spage>415</spage><epage>415</epage><pages>415-415</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>25565945</pmid><doi>10.3389/fnins.2014.00415</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2014-12, Vol.8, p.415-415 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce |
source | Publicly Available Content Database; PubMed Central |
subjects | Arm Brain Brain-computer interface Computer applications Cortex (motor) Electrical stimuli Electroencephalography Error-related potentials Implants Interfaces Neurology Neurorehabilitation Neuroscience Paralysis Quality of life Recovery of function Rehabilitation reinforcement learning Spinal Cord Injuries Stroke Traumatic brain injury |
title | An adaptive brain actuated system for augmenting rehabilitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20brain%20actuated%20system%20for%20augmenting%20rehabilitation&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Roset,%20Scott%20A&rft.date=2014-12-12&rft.volume=8&rft.spage=415&rft.epage=415&rft.pages=415-415&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2014.00415&rft_dat=%3Cproquest_doaj_%3E1647010443%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305093771&rft_id=info:pmid/25565945&rfr_iscdi=true |