Loading…

An adaptive brain actuated system for augmenting rehabilitation

For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization th...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2014-12, Vol.8, p.415-415
Main Authors: Roset, Scott A, Gant, Katie, Prasad, Abhishek, Sanchez, Justin C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303
cites cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303
container_end_page 415
container_issue
container_start_page 415
container_title Frontiers in neuroscience
container_volume 8
creator Roset, Scott A
Gant, Katie
Prasad, Abhishek
Sanchez, Justin C
description For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.
doi_str_mv 10.3389/fnins.2014.00415
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce</doaj_id><sourcerecordid>1647010443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</originalsourceid><addsrcrecordid>eNqNkj1vFDEQhlcIRD6gp0Ir0dDc4fHnugFFEYRIkWhAorPs9ezFp931YXsj5d_j3IUToaKyPfPOo5nx2zRvgKwZ6_SHYQ5zXlMCfE0IB_GsOQUp6YoL9vP58c67k-Ys5y0hknacvmxOqBBSaC5Om08Xc2u93ZVwh61LNtRnXxZb0Lf5Phec2iGm1i6bCecS5k2b8Na6MIZiS4jzq-bFYMeMrx_P8-bHl8_fL7-ubr5dXV9e3Kx6QVlZgUInoNOeD4Jz6oRHwRV1QFB7MnghuUflvHTgGCipGcNOI-k7AmAZYefN9YHro92aXQqTTfcm2mD2gZg2xqYS-hGN90QN3iovVMe17S0IPoAeELRjqsfK-nhg7RY3oe_rYMmOT6BPM3O4NZt4ZziVXBBWAe8fASn-WjAXM4Xc4zjaGeOSDUiuCBDO_0ta24T6IVX67h_pNi5prls1lBFBNFMKqoocVH2KOSccjn0DMQ-mMHtTmAdTmL0pasnbv-c9FvxxAfsNte6zSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305093771</pqid></control><display><type>article</type><title>An adaptive brain actuated system for augmenting rehabilitation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</creator><creatorcontrib>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</creatorcontrib><description>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2014.00415</identifier><identifier>PMID: 25565945</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Arm ; Brain ; Brain-computer interface ; Computer applications ; Cortex (motor) ; Electrical stimuli ; Electroencephalography ; Error-related potentials ; Implants ; Interfaces ; Neurology ; Neurorehabilitation ; Neuroscience ; Paralysis ; Quality of life ; Recovery of function ; Rehabilitation ; reinforcement learning ; Spinal Cord Injuries ; Stroke ; Traumatic brain injury</subject><ispartof>Frontiers in neuroscience, 2014-12, Vol.8, p.415-415</ispartof><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014 Roset, Gant, Prasad and Sanchez. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</citedby><cites>FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2305093771/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2305093771?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25565945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roset, Scott A</creatorcontrib><creatorcontrib>Gant, Katie</creatorcontrib><creatorcontrib>Prasad, Abhishek</creatorcontrib><creatorcontrib>Sanchez, Justin C</creatorcontrib><title>An adaptive brain actuated system for augmenting rehabilitation</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</description><subject>Arm</subject><subject>Brain</subject><subject>Brain-computer interface</subject><subject>Computer applications</subject><subject>Cortex (motor)</subject><subject>Electrical stimuli</subject><subject>Electroencephalography</subject><subject>Error-related potentials</subject><subject>Implants</subject><subject>Interfaces</subject><subject>Neurology</subject><subject>Neurorehabilitation</subject><subject>Neuroscience</subject><subject>Paralysis</subject><subject>Quality of life</subject><subject>Recovery of function</subject><subject>Rehabilitation</subject><subject>reinforcement learning</subject><subject>Spinal Cord Injuries</subject><subject>Stroke</subject><subject>Traumatic brain injury</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkj1vFDEQhlcIRD6gp0Ir0dDc4fHnugFFEYRIkWhAorPs9ezFp931YXsj5d_j3IUToaKyPfPOo5nx2zRvgKwZ6_SHYQ5zXlMCfE0IB_GsOQUp6YoL9vP58c67k-Ys5y0hknacvmxOqBBSaC5Om08Xc2u93ZVwh61LNtRnXxZb0Lf5Phec2iGm1i6bCecS5k2b8Na6MIZiS4jzq-bFYMeMrx_P8-bHl8_fL7-ubr5dXV9e3Kx6QVlZgUInoNOeD4Jz6oRHwRV1QFB7MnghuUflvHTgGCipGcNOI-k7AmAZYefN9YHro92aXQqTTfcm2mD2gZg2xqYS-hGN90QN3iovVMe17S0IPoAeELRjqsfK-nhg7RY3oe_rYMmOT6BPM3O4NZt4ZziVXBBWAe8fASn-WjAXM4Xc4zjaGeOSDUiuCBDO_0ta24T6IVX67h_pNi5prls1lBFBNFMKqoocVH2KOSccjn0DMQ-mMHtTmAdTmL0pasnbv-c9FvxxAfsNte6zSw</recordid><startdate>20141212</startdate><enddate>20141212</enddate><creator>Roset, Scott A</creator><creator>Gant, Katie</creator><creator>Prasad, Abhishek</creator><creator>Sanchez, Justin C</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141212</creationdate><title>An adaptive brain actuated system for augmenting rehabilitation</title><author>Roset, Scott A ; Gant, Katie ; Prasad, Abhishek ; Sanchez, Justin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arm</topic><topic>Brain</topic><topic>Brain-computer interface</topic><topic>Computer applications</topic><topic>Cortex (motor)</topic><topic>Electrical stimuli</topic><topic>Electroencephalography</topic><topic>Error-related potentials</topic><topic>Implants</topic><topic>Interfaces</topic><topic>Neurology</topic><topic>Neurorehabilitation</topic><topic>Neuroscience</topic><topic>Paralysis</topic><topic>Quality of life</topic><topic>Recovery of function</topic><topic>Rehabilitation</topic><topic>reinforcement learning</topic><topic>Spinal Cord Injuries</topic><topic>Stroke</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roset, Scott A</creatorcontrib><creatorcontrib>Gant, Katie</creatorcontrib><creatorcontrib>Prasad, Abhishek</creatorcontrib><creatorcontrib>Sanchez, Justin C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roset, Scott A</au><au>Gant, Katie</au><au>Prasad, Abhishek</au><au>Sanchez, Justin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive brain actuated system for augmenting rehabilitation</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2014-12-12</date><risdate>2014</risdate><volume>8</volume><spage>415</spage><epage>415</epage><pages>415-415</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>25565945</pmid><doi>10.3389/fnins.2014.00415</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2014-12, Vol.8, p.415-415
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dd07fda7d57849aca154f19fe19b37ce
source Publicly Available Content Database; PubMed Central
subjects Arm
Brain
Brain-computer interface
Computer applications
Cortex (motor)
Electrical stimuli
Electroencephalography
Error-related potentials
Implants
Interfaces
Neurology
Neurorehabilitation
Neuroscience
Paralysis
Quality of life
Recovery of function
Rehabilitation
reinforcement learning
Spinal Cord Injuries
Stroke
Traumatic brain injury
title An adaptive brain actuated system for augmenting rehabilitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20brain%20actuated%20system%20for%20augmenting%20rehabilitation&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Roset,%20Scott%20A&rft.date=2014-12-12&rft.volume=8&rft.spage=415&rft.epage=415&rft.pages=415-415&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2014.00415&rft_dat=%3Cproquest_doaj_%3E1647010443%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-17eb5189d4f5442b5de5472b10e9d0fd564de7bd6b1b3176933e89e0c8011a303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305093771&rft_id=info:pmid/25565945&rfr_iscdi=true