Loading…

Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation

Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2021-08, Vol.10
Main Authors: Sobczak, Filip, Pais-Roldán, Patricia, Takahashi, Kengo, Yu, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3
cites cdi_FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 10
creator Sobczak, Filip
Pais-Roldán, Patricia
Takahashi, Kengo
Yu, Xin
description Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.
doi_str_mv 10.7554/eLife.68980
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd2f63a9a4604c25b7afdc4c219891ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676573903</galeid><doaj_id>oai_doaj_org_article_dd2f63a9a4604c25b7afdc4c219891ed</doaj_id><sourcerecordid>A676573903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3</originalsourceid><addsrcrecordid>eNptkl2L1DAUhoso7rLulfdS8EaRGZM0SdMbYVm_BkaEVcG7kI-TToZO0m1adf-9mc667ojpRQ7pc57Qt6conmK0rBmjr2HtHSy5aAR6UJwSxNACCfr94b36pDhPaYvyqqkQuHlcnFSU8opjclr0b8FE60Nbjhso9aB8KNOoRlhY6CFYCGM5QKdGH0Pa-L7UMP4ECGU_9b4r7U1QO29SqYLNXBr3prm_dJ-uVmXybVBd6brJjNMseVI8cqpLcH67nxXf3r_7evlxsf78YXV5sV4Y2mC00KC5RkIA4dbWHBAg24gG1bxWQABRhpSmrrJW1BQzgZ1mjda40hYbinR1VqwOXhvVVvaD36nhRkbl5XwQh1aqYfSmA2ktcbxSjaIcUUOYrpWzJlc434jBZtebg6uf9A6syaEMqjuSHr8JfiPb-EOKbCScZMGLW8EQr6cck9z5ZKDrVIA4JUkYrxtR0Rl9_g-6jdOQQ9xTDSOEcsH-Uq3KH-CDi_les5fKC15zVlcNqjK1_A-VHwv5p8UAzufzo4aXRw2ZGeHX2KopJbn6cnXMvjqwZogpDeDu8sBI7mdTzrMp59nM9LP7Ed6xfyax-g0Wwt-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595224685</pqid></control><display><type>article</type><title>Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Sobczak, Filip ; Pais-Roldán, Patricia ; Takahashi, Kengo ; Yu, Xin</creator><creatorcontrib>Sobczak, Filip ; Pais-Roldán, Patricia ; Takahashi, Kengo ; Yu, Xin</creatorcontrib><description>Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.68980</identifier><identifier>PMID: 34463612</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Activity patterns ; Analysis ; Anesthesia, General ; Animals ; Arousal ; Brain ; Brain - physiology ; Brain Mapping ; brain state ; Cognition ; Cognitive ability ; Correlation analysis ; decoding ; fMRI ; Functional magnetic resonance imaging ; Magnetic Resonance Imaging ; Male ; Neural Networks, Computer ; neuromodulation ; Neurons ; Neuroscience ; Pattern Recognition, Automated ; Physiological aspects ; Principal Component Analysis ; pupil ; Pupil - physiology ; Rats ; Rats, Sprague-Dawley ; Reproducibility ; Signal Processing, Computer-Assisted ; Standard deviation ; Time Factors</subject><ispartof>eLife, 2021-08, Vol.10</ispartof><rights>2021, Sobczak et al.</rights><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Sobczak et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021, Sobczak et al 2021 Sobczak et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3</citedby><cites>FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3</cites><orcidid>0000-0001-9169-0243 ; 0000-0002-9381-3048 ; 0000-0001-9890-5489 ; 0000-0002-3532-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595224685/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595224685?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34463612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobczak, Filip</creatorcontrib><creatorcontrib>Pais-Roldán, Patricia</creatorcontrib><creatorcontrib>Takahashi, Kengo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><title>Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation</title><title>eLife</title><addtitle>Elife</addtitle><description>Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.</description><subject>Activity patterns</subject><subject>Analysis</subject><subject>Anesthesia, General</subject><subject>Animals</subject><subject>Arousal</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>brain state</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Correlation analysis</subject><subject>decoding</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Neural Networks, Computer</subject><subject>neuromodulation</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Pattern Recognition, Automated</subject><subject>Physiological aspects</subject><subject>Principal Component Analysis</subject><subject>pupil</subject><subject>Pupil - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reproducibility</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Standard deviation</subject><subject>Time Factors</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhoso7rLulfdS8EaRGZM0SdMbYVm_BkaEVcG7kI-TToZO0m1adf-9mc667ojpRQ7pc57Qt6conmK0rBmjr2HtHSy5aAR6UJwSxNACCfr94b36pDhPaYvyqqkQuHlcnFSU8opjclr0b8FE60Nbjhso9aB8KNOoRlhY6CFYCGM5QKdGH0Pa-L7UMP4ECGU_9b4r7U1QO29SqYLNXBr3prm_dJ-uVmXybVBd6brJjNMseVI8cqpLcH67nxXf3r_7evlxsf78YXV5sV4Y2mC00KC5RkIA4dbWHBAg24gG1bxWQABRhpSmrrJW1BQzgZ1mjda40hYbinR1VqwOXhvVVvaD36nhRkbl5XwQh1aqYfSmA2ktcbxSjaIcUUOYrpWzJlc434jBZtebg6uf9A6syaEMqjuSHr8JfiPb-EOKbCScZMGLW8EQr6cck9z5ZKDrVIA4JUkYrxtR0Rl9_g-6jdOQQ9xTDSOEcsH-Uq3KH-CDi_les5fKC15zVlcNqjK1_A-VHwv5p8UAzufzo4aXRw2ZGeHX2KopJbn6cnXMvjqwZogpDeDu8sBI7mdTzrMp59nM9LP7Ed6xfyax-g0Wwt-M</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>Sobczak, Filip</creator><creator>Pais-Roldán, Patricia</creator><creator>Takahashi, Kengo</creator><creator>Yu, Xin</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9169-0243</orcidid><orcidid>https://orcid.org/0000-0002-9381-3048</orcidid><orcidid>https://orcid.org/0000-0001-9890-5489</orcidid><orcidid>https://orcid.org/0000-0002-3532-1512</orcidid></search><sort><creationdate>20210831</creationdate><title>Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation</title><author>Sobczak, Filip ; Pais-Roldán, Patricia ; Takahashi, Kengo ; Yu, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity patterns</topic><topic>Analysis</topic><topic>Anesthesia, General</topic><topic>Animals</topic><topic>Arousal</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>brain state</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Correlation analysis</topic><topic>decoding</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Neural Networks, Computer</topic><topic>neuromodulation</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Pattern Recognition, Automated</topic><topic>Physiological aspects</topic><topic>Principal Component Analysis</topic><topic>pupil</topic><topic>Pupil - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reproducibility</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Standard deviation</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobczak, Filip</creatorcontrib><creatorcontrib>Pais-Roldán, Patricia</creatorcontrib><creatorcontrib>Takahashi, Kengo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobczak, Filip</au><au>Pais-Roldán, Patricia</au><au>Takahashi, Kengo</au><au>Yu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>10</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Pupil dynamics serve as a physiological indicator of cognitive processes and arousal states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect brain state fluctuations driven by neuromodulatory systems. Resting-state fMRI (rs-fMRI) has been used to identify global patterns of neuronal correlation with pupil diameter changes; however, the linkage between distinct brain state-dependent activation patterns of neuromodulatory nuclei with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the typical rs-fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns of rs-fMRI with principal component analysis (PCA) and characterized the cluster-specific pupil-fMRI relationships by optimizing the PCA component weighting via decoding methods. This work shows that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, presenting a novel PCA-based decoding method to study the brain state-dependent pupil-fMRI relationship.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>34463612</pmid><doi>10.7554/eLife.68980</doi><orcidid>https://orcid.org/0000-0001-9169-0243</orcidid><orcidid>https://orcid.org/0000-0002-9381-3048</orcidid><orcidid>https://orcid.org/0000-0001-9890-5489</orcidid><orcidid>https://orcid.org/0000-0002-3532-1512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2021-08, Vol.10
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dd2f63a9a4604c25b7afdc4c219891ed
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Activity patterns
Analysis
Anesthesia, General
Animals
Arousal
Brain
Brain - physiology
Brain Mapping
brain state
Cognition
Cognitive ability
Correlation analysis
decoding
fMRI
Functional magnetic resonance imaging
Magnetic Resonance Imaging
Male
Neural Networks, Computer
neuromodulation
Neurons
Neuroscience
Pattern Recognition, Automated
Physiological aspects
Principal Component Analysis
pupil
Pupil - physiology
Rats
Rats, Sprague-Dawley
Reproducibility
Signal Processing, Computer-Assisted
Standard deviation
Time Factors
title Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20brain%20state-dependent%20relationship%20between%20pupil%20dynamics%20and%20resting%20state%20fMRI%20signal%20fluctuation&rft.jtitle=eLife&rft.au=Sobczak,%20Filip&rft.date=2021-08-31&rft.volume=10&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.68980&rft_dat=%3Cgale_doaj_%3EA676573903%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4910-beb6b088e26dd76e0e0d9890767ae2e0450ab4f3dd8741581fb59bb13bd1c40b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595224685&rft_id=info:pmid/34463612&rft_galeid=A676573903&rfr_iscdi=true