Loading…

The Phylogeny of Rays and Skates (Chondrichthyes: Elasmobranchii) Based on Morphological Characters Revisited

Elasmobranchii are relatively well-studied. However, numerous phylogenetic uncertainties about their relationships remain. Here, we revisit the phylogenetic evidence based on a detailed morphological re-evaluation of all the major extant batomorph clades (skates and rays), including several holomorp...

Full description

Saved in:
Bibliographic Details
Published in:Diversity (Basel) 2022-06, Vol.14 (6), p.456-456
Main Authors: Villalobos-Segura, Eduardo, Marramà, Giuseppe, Carnevale, Giorgio, Claeson, Kerin M., Underwood, Charlie J., Naylor, Gavin J. P., Kriwet, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elasmobranchii are relatively well-studied. However, numerous phylogenetic uncertainties about their relationships remain. Here, we revisit the phylogenetic evidence based on a detailed morphological re-evaluation of all the major extant batomorph clades (skates and rays), including several holomorphic fossil taxa from the Palaeozoic, Mesozoic and Cenozoic, and an extensive outgroup sampling, which includes sharks, chimaeras and several other fossil chondrichthyans. The parsimony and maximum-likelihood analyses found more resolved but contrasting topologies, with the Bayesian inference tree neither supporting nor disfavouring any of them. Overall, the analyses result in similar clade compositions and topologies, with the Jurassic batomorphs forming the sister clade to all the other batomorphs, whilst all the Cretaceous batomorphs are nested within the remaining main clades. The disparate arrangements recovered under the different criteria suggest that a detailed study of Jurassic taxa is of utmost importance to present a more consistent topology in the deeper nodes, as issues continue to be present when analysing those clades previously recognized only by molecular analyses (e.g., Rhinopristiformes and Torpediniformes). The consistent placement of fossil taxa within specific groups by the different phylogenetic criteria is promising and indicates that the inclusion of more fossil taxa in the present matrix will likely not cause loss of resolution, therefore suggesting that a strong phylogenetic signal can be recovered from fossil taxa.
ISSN:1424-2818
1424-2818
DOI:10.3390/d14060456