Loading…
Rational Engineering of Anode Current Collector for Dendrite-Free Lithium Deposition: Strategy, Application, and Perspective
Lithium metal anodes have attracted extensive attention due to their high theoretical capacity and low redox potential. However, low Coulombic efficiency, serious parasitic reaction, large volume change, and dendrite growth during cycling have hindered their practical application. The engineering of...
Saved in:
Published in: | Frontiers in chemistry 2022-05, Vol.10, p.884308-884308 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lithium metal anodes have attracted extensive attention due to their high theoretical capacity and low redox potential. However, low Coulombic efficiency, serious parasitic reaction, large volume change, and dendrite growth during cycling have hindered their practical application. The engineering of an anode current collector provides important advances to solve these problems, eliminate excess lithium usage, and substantially increase the energy density. In this review, we summarize the engineering strategies of an anode current collector with emphasis on different methods and applications in lithium metal-based systems. Finally, the perspectives and challenges of current collector engineering for lithium metal anode are discussed. |
---|---|
ISSN: | 2296-2646 2296-2646 |
DOI: | 10.3389/fchem.2022.884308 |