Loading…

Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement

Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2024-03, Vol.12 (3), p.506
Main Authors: Liu, Changhong, Wen, Jiawen, Huang, Jinshan, Lin, Weiren, Wu, Bochun, Xie, Ning, Zou, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43
container_end_page
container_issue 3
container_start_page 506
container_title Journal of marine science and engineering
container_volume 12
creator Liu, Changhong
Wen, Jiawen
Huang, Jinshan
Lin, Weiren
Wu, Bochun
Xie, Ning
Zou, Tao
description Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.
doi_str_mv 10.3390/jmse12030506
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788249369</galeid><doaj_id>oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a</doaj_id><sourcerecordid>A788249369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</originalsourceid><addsrcrecordid>eNpNkcFq3DAQhk1poSHJrQ8g6LVOZY0l2ccl3TYLC3tJzmYsjb0ya2krK4Rc-uyVs6VEA5ph-P-PYaYovlT8DqDl36d5oUpw4JKrD8WV4FqXFVTi47v6c3G7LBPPrxGq4uqq-LN34zG90PqzJ28pvmCiyA79RCaxH5RycsGzzWkM0aXjzIYQ2XbuyVqyWXA-hdeZfHYvzo_sIZMoloeYUWzns3jGNwB6y3YzjsS2_oje0Gq6KT4NeFro9l--Lp5-bh_vH8r94dfufrMvDShIJSitNcdaCK4GZQeN2FCtrYC25qYSJKSChlDmRRhDEvu279caqrYxpobrYnfh2oBTd45uxvjaBXTdWyPEscOYnDlRZ62UGSmlVG2t5dBy1bdUCzBK16gxs75eWOcYfj_TkropPEefx--AcwBQeYysuruoRsxQlxeRIpoclmZngqfB5f5GN42oW1Cr4dvFYGJYlkjD_zEr3q0X7t5fGP4CluuYrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003336539</pqid></control><display><type>article</type><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><source>Publicly Available Content Database</source><creator>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</creator><creatorcontrib>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</creatorcontrib><description>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse12030506</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Acoustics ; Aggregation ; Algorithms ; Aquatic invertebrates ; attention mechanism ; Biomimetics ; Classification ; Computation ; Computer networks ; Computer vision ; Datasets ; Deep learning ; Detection ; embedded deployment ; Embedded systems ; Image enhancement ; Image restoration ; Light attenuation ; Lightweight ; lightweight network ; Machine vision ; Neural networks ; Object recognition ; Robotics ; Robustness (mathematics) ; Streamlines ; Telematics ; Underwater ; underwater object detection ; Underwater resources ; Underwater robots ; YOLO</subject><ispartof>Journal of marine science and engineering, 2024-03, Vol.12 (3), p.506</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</cites><orcidid>0009-0003-5356-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003336539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003336539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Wen, Jiawen</creatorcontrib><creatorcontrib>Huang, Jinshan</creatorcontrib><creatorcontrib>Lin, Weiren</creatorcontrib><creatorcontrib>Wu, Bochun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><title>Journal of marine science and engineering</title><description>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Aggregation</subject><subject>Algorithms</subject><subject>Aquatic invertebrates</subject><subject>attention mechanism</subject><subject>Biomimetics</subject><subject>Classification</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detection</subject><subject>embedded deployment</subject><subject>Embedded systems</subject><subject>Image enhancement</subject><subject>Image restoration</subject><subject>Light attenuation</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Machine vision</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Streamlines</subject><subject>Telematics</subject><subject>Underwater</subject><subject>underwater object detection</subject><subject>Underwater resources</subject><subject>Underwater robots</subject><subject>YOLO</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFq3DAQhk1poSHJrQ8g6LVOZY0l2ccl3TYLC3tJzmYsjb0ya2krK4Rc-uyVs6VEA5ph-P-PYaYovlT8DqDl36d5oUpw4JKrD8WV4FqXFVTi47v6c3G7LBPPrxGq4uqq-LN34zG90PqzJ28pvmCiyA79RCaxH5RycsGzzWkM0aXjzIYQ2XbuyVqyWXA-hdeZfHYvzo_sIZMoloeYUWzns3jGNwB6y3YzjsS2_oje0Gq6KT4NeFro9l--Lp5-bh_vH8r94dfufrMvDShIJSitNcdaCK4GZQeN2FCtrYC25qYSJKSChlDmRRhDEvu279caqrYxpobrYnfh2oBTd45uxvjaBXTdWyPEscOYnDlRZ62UGSmlVG2t5dBy1bdUCzBK16gxs75eWOcYfj_TkropPEefx--AcwBQeYysuruoRsxQlxeRIpoclmZngqfB5f5GN42oW1Cr4dvFYGJYlkjD_zEr3q0X7t5fGP4CluuYrA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Changhong</creator><creator>Wen, Jiawen</creator><creator>Huang, Jinshan</creator><creator>Lin, Weiren</creator><creator>Wu, Bochun</creator><creator>Xie, Ning</creator><creator>Zou, Tao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-5356-2947</orcidid></search><sort><creationdate>20240301</creationdate><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><author>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Aggregation</topic><topic>Algorithms</topic><topic>Aquatic invertebrates</topic><topic>attention mechanism</topic><topic>Biomimetics</topic><topic>Classification</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detection</topic><topic>embedded deployment</topic><topic>Embedded systems</topic><topic>Image enhancement</topic><topic>Image restoration</topic><topic>Light attenuation</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Machine vision</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Streamlines</topic><topic>Telematics</topic><topic>Underwater</topic><topic>underwater object detection</topic><topic>Underwater resources</topic><topic>Underwater robots</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Wen, Jiawen</creatorcontrib><creatorcontrib>Huang, Jinshan</creatorcontrib><creatorcontrib>Lin, Weiren</creatorcontrib><creatorcontrib>Wu, Bochun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Changhong</au><au>Wen, Jiawen</au><au>Huang, Jinshan</au><au>Lin, Weiren</au><au>Wu, Bochun</au><au>Xie, Ning</au><au>Zou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>3</issue><spage>506</spage><pages>506-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse12030506</doi><orcidid>https://orcid.org/0009-0003-5356-2947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-1312
ispartof Journal of marine science and engineering, 2024-03, Vol.12 (3), p.506
issn 2077-1312
2077-1312
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a
source Publicly Available Content Database
subjects Accuracy
Acoustics
Aggregation
Algorithms
Aquatic invertebrates
attention mechanism
Biomimetics
Classification
Computation
Computer networks
Computer vision
Datasets
Deep learning
Detection
embedded deployment
Embedded systems
Image enhancement
Image restoration
Light attenuation
Lightweight
lightweight network
Machine vision
Neural networks
Object recognition
Robotics
Robustness (mathematics)
Streamlines
Telematics
Underwater
underwater object detection
Underwater resources
Underwater robots
YOLO
title Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Underwater%20Object%20Detection%20Algorithm%20for%20Embedded%20Deployment%20Using%20Higher-Order%20Information%20and%20Image%20Enhancement&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Liu,%20Changhong&rft.date=2024-03-01&rft.volume=12&rft.issue=3&rft.spage=506&rft.pages=506-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse12030506&rft_dat=%3Cgale_doaj_%3EA788249369%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003336539&rft_id=info:pmid/&rft_galeid=A788249369&rfr_iscdi=true