Loading…
Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation...
Saved in:
Published in: | Journal of marine science and engineering 2024-03, Vol.12 (3), p.506 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43 |
container_end_page | |
container_issue | 3 |
container_start_page | 506 |
container_title | Journal of marine science and engineering |
container_volume | 12 |
creator | Liu, Changhong Wen, Jiawen Huang, Jinshan Lin, Weiren Wu, Bochun Xie, Ning Zou, Tao |
description | Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential. |
doi_str_mv | 10.3390/jmse12030506 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788249369</galeid><doaj_id>oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a</doaj_id><sourcerecordid>A788249369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</originalsourceid><addsrcrecordid>eNpNkcFq3DAQhk1poSHJrQ8g6LVOZY0l2ccl3TYLC3tJzmYsjb0ya2krK4Rc-uyVs6VEA5ph-P-PYaYovlT8DqDl36d5oUpw4JKrD8WV4FqXFVTi47v6c3G7LBPPrxGq4uqq-LN34zG90PqzJ28pvmCiyA79RCaxH5RycsGzzWkM0aXjzIYQ2XbuyVqyWXA-hdeZfHYvzo_sIZMoloeYUWzns3jGNwB6y3YzjsS2_oje0Gq6KT4NeFro9l--Lp5-bh_vH8r94dfufrMvDShIJSitNcdaCK4GZQeN2FCtrYC25qYSJKSChlDmRRhDEvu279caqrYxpobrYnfh2oBTd45uxvjaBXTdWyPEscOYnDlRZ62UGSmlVG2t5dBy1bdUCzBK16gxs75eWOcYfj_TkropPEefx--AcwBQeYysuruoRsxQlxeRIpoclmZngqfB5f5GN42oW1Cr4dvFYGJYlkjD_zEr3q0X7t5fGP4CluuYrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003336539</pqid></control><display><type>article</type><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><source>Publicly Available Content Database</source><creator>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</creator><creatorcontrib>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</creatorcontrib><description>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse12030506</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Acoustics ; Aggregation ; Algorithms ; Aquatic invertebrates ; attention mechanism ; Biomimetics ; Classification ; Computation ; Computer networks ; Computer vision ; Datasets ; Deep learning ; Detection ; embedded deployment ; Embedded systems ; Image enhancement ; Image restoration ; Light attenuation ; Lightweight ; lightweight network ; Machine vision ; Neural networks ; Object recognition ; Robotics ; Robustness (mathematics) ; Streamlines ; Telematics ; Underwater ; underwater object detection ; Underwater resources ; Underwater robots ; YOLO</subject><ispartof>Journal of marine science and engineering, 2024-03, Vol.12 (3), p.506</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</cites><orcidid>0009-0003-5356-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003336539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003336539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Wen, Jiawen</creatorcontrib><creatorcontrib>Huang, Jinshan</creatorcontrib><creatorcontrib>Lin, Weiren</creatorcontrib><creatorcontrib>Wu, Bochun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><title>Journal of marine science and engineering</title><description>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Aggregation</subject><subject>Algorithms</subject><subject>Aquatic invertebrates</subject><subject>attention mechanism</subject><subject>Biomimetics</subject><subject>Classification</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detection</subject><subject>embedded deployment</subject><subject>Embedded systems</subject><subject>Image enhancement</subject><subject>Image restoration</subject><subject>Light attenuation</subject><subject>Lightweight</subject><subject>lightweight network</subject><subject>Machine vision</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Streamlines</subject><subject>Telematics</subject><subject>Underwater</subject><subject>underwater object detection</subject><subject>Underwater resources</subject><subject>Underwater robots</subject><subject>YOLO</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFq3DAQhk1poSHJrQ8g6LVOZY0l2ccl3TYLC3tJzmYsjb0ya2krK4Rc-uyVs6VEA5ph-P-PYaYovlT8DqDl36d5oUpw4JKrD8WV4FqXFVTi47v6c3G7LBPPrxGq4uqq-LN34zG90PqzJ28pvmCiyA79RCaxH5RycsGzzWkM0aXjzIYQ2XbuyVqyWXA-hdeZfHYvzo_sIZMoloeYUWzns3jGNwB6y3YzjsS2_oje0Gq6KT4NeFro9l--Lp5-bh_vH8r94dfufrMvDShIJSitNcdaCK4GZQeN2FCtrYC25qYSJKSChlDmRRhDEvu279caqrYxpobrYnfh2oBTd45uxvjaBXTdWyPEscOYnDlRZ62UGSmlVG2t5dBy1bdUCzBK16gxs75eWOcYfj_TkropPEefx--AcwBQeYysuruoRsxQlxeRIpoclmZngqfB5f5GN42oW1Cr4dvFYGJYlkjD_zEr3q0X7t5fGP4CluuYrA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Changhong</creator><creator>Wen, Jiawen</creator><creator>Huang, Jinshan</creator><creator>Lin, Weiren</creator><creator>Wu, Bochun</creator><creator>Xie, Ning</creator><creator>Zou, Tao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-5356-2947</orcidid></search><sort><creationdate>20240301</creationdate><title>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</title><author>Liu, Changhong ; Wen, Jiawen ; Huang, Jinshan ; Lin, Weiren ; Wu, Bochun ; Xie, Ning ; Zou, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Aggregation</topic><topic>Algorithms</topic><topic>Aquatic invertebrates</topic><topic>attention mechanism</topic><topic>Biomimetics</topic><topic>Classification</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detection</topic><topic>embedded deployment</topic><topic>Embedded systems</topic><topic>Image enhancement</topic><topic>Image restoration</topic><topic>Light attenuation</topic><topic>Lightweight</topic><topic>lightweight network</topic><topic>Machine vision</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Streamlines</topic><topic>Telematics</topic><topic>Underwater</topic><topic>underwater object detection</topic><topic>Underwater resources</topic><topic>Underwater robots</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Wen, Jiawen</creatorcontrib><creatorcontrib>Huang, Jinshan</creatorcontrib><creatorcontrib>Lin, Weiren</creatorcontrib><creatorcontrib>Wu, Bochun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Changhong</au><au>Wen, Jiawen</au><au>Huang, Jinshan</au><au>Lin, Weiren</au><au>Wu, Bochun</au><au>Xie, Ning</au><au>Zou, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>3</issue><spage>506</spage><pages>506-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges such as low robustness, extensive computation of model parameters, and a high false detection rate. To address these challenges, this paper proposes a lightweight underwater object detection method integrating deep learning and image enhancement. Firstly, FUnIE-GAN is employed to perform data enhancement to restore the authentic colors of underwater images, and subsequently, the restored images are fed into an enhanced object detection network named YOLOv7-GN proposed in this paper. Secondly, a lightweight higher-order attention layer aggregation network (ACC3-ELAN) is designed to improve the fusion perception of higher-order features in the backbone network. Moreover, the head network is enhanced by leveraging the interaction of multi-scale higher-order information, additionally fusing higher-order semantic information from features at different scales. To further streamline the entire network, we also introduce the AC-ELAN-t module, which is derived from pruning based on ACC3-ELAN. Finally, the algorithm undergoes practical testing on a biomimetic sea flatworm underwater robot. The experimental results on the DUO dataset show that our proposed method improves the performance of object detection in underwater environments. It provides a valuable reference for realizing object detection in underwater embedded devices with great practical potential.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse12030506</doi><orcidid>https://orcid.org/0009-0003-5356-2947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2024-03, Vol.12 (3), p.506 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dd55c1255569475f906b9e423c674a7a |
source | Publicly Available Content Database |
subjects | Accuracy Acoustics Aggregation Algorithms Aquatic invertebrates attention mechanism Biomimetics Classification Computation Computer networks Computer vision Datasets Deep learning Detection embedded deployment Embedded systems Image enhancement Image restoration Light attenuation Lightweight lightweight network Machine vision Neural networks Object recognition Robotics Robustness (mathematics) Streamlines Telematics Underwater underwater object detection Underwater resources Underwater robots YOLO |
title | Lightweight Underwater Object Detection Algorithm for Embedded Deployment Using Higher-Order Information and Image Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Underwater%20Object%20Detection%20Algorithm%20for%20Embedded%20Deployment%20Using%20Higher-Order%20Information%20and%20Image%20Enhancement&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Liu,%20Changhong&rft.date=2024-03-01&rft.volume=12&rft.issue=3&rft.spage=506&rft.pages=506-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse12030506&rft_dat=%3Cgale_doaj_%3EA788249369%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-367770a42206f6df7aa8e47d23940c12e25638ea5390cce5ab9bb390c3198cc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003336539&rft_id=info:pmid/&rft_galeid=A788249369&rfr_iscdi=true |