Loading…
A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models
The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framewor...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-05, Vol.16 (10), p.1732 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-81eb09005e5b68f223bc12daad78275cb6fff7f3d192f369dfb3af48e083f4be3 |
container_end_page | |
container_issue | 10 |
container_start_page | 1732 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 16 |
creator | Cao, Yuanhao Luo, Chunzeng Tan, Shurun Kang, Do-Hyuk Fang, Yiwen Pan, Jinmei |
description | The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radiative transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify those internal parameters in the snow hydrology and RT models that lack observational records. The modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä, Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary, this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a snow hydrology model and a radiative transfer model. This approach ensures physically realistic retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s performance, including observation time intervals and combinations of microwave observation channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal SWE retrieval performance. |
doi_str_mv | 10.3390/rs16101732 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dd6221b2eacd4b60967aaffcd9473887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795448324</galeid><doaj_id>oai_doaj_org_article_dd6221b2eacd4b60967aaffcd9473887</doaj_id><sourcerecordid>A795448324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-81eb09005e5b68f223bc12daad78275cb6fff7f3d192f369dfb3af48e083f4be3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUILCWku-QWC3ApO9LWr1dG4-YKEljQlRzErjYzc9cqW1jb-91HqkHTmMDOPeY_HTFWdM3ophKZXKbOGUaYEP6pOOFV8IrnmX_7rj6uznBe0hBBMU3lSrafk9xB35AVGTOR6vQlb6HEYyROOKWAZyE2CJe5i-ktmcbPqwzAn7Ae527sU-zjfExgc-QU5hy2Sx2BT3EHpnsAFGN-w5wRD9kX9MTrs87fqq4c-49l7Pa3-3Fw_z-4mDz9v72fTh4kVtR4nLcOOakprrLum9ZyLzjLuAJxquapt13jvlReOae5Fo53vBHjZIm2Flx2K0-r-oOsiLMwqhSWkvYkQzD8gprmBNAbbo3Gu4Zx1HME62TVUNwrAe-u0VKJtVdG6OGitUlxvMI9mETdpKPaNoLVWxWgtytblYWteTmjC4OOYwJZ0uAw2DuhDwadK11K2gstC-H4glKPlnNB_2GTUvL3UfL5UvAL_JJPq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059709053</pqid></control><display><type>article</type><title>A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cao, Yuanhao ; Luo, Chunzeng ; Tan, Shurun ; Kang, Do-Hyuk ; Fang, Yiwen ; Pan, Jinmei</creator><creatorcontrib>Cao, Yuanhao ; Luo, Chunzeng ; Tan, Shurun ; Kang, Do-Hyuk ; Fang, Yiwen ; Pan, Jinmei</creatorcontrib><description>The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radiative transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify those internal parameters in the snow hydrology and RT models that lack observational records. The modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä, Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary, this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a snow hydrology model and a radiative transfer model. This approach ensures physically realistic retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s performance, including observation time intervals and combinations of microwave observation channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal SWE retrieval performance.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16101732</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>assimilation framework ; Brightness temperature ; Climate change ; Comparative analysis ; Computer simulation ; Computer-generated environments ; Coupling ; Data assimilation ; Data collection ; dense medium radiative transfer (DMRT) model ; ensemble Kalman filter (EnKF) ; Environmental aspects ; Equivalence ; Grain size ; Hydrologic cycle ; Hydrologic models ; Hydrology ; Kalman filtering ; Kalman filters ; Measurement ; Microwave scattering ; Mie scattering ; Parameters ; Physical properties ; Radiative transfer ; Remote sensing ; Retrieval ; Snow ; Snow depth ; snow hydrology model ; snow microwave remote sensing ; snow water equivalent (SWE) retrieval ; Snow-water equivalent ; Snowpack ; Stream flow ; Water</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-05, Vol.16 (10), p.1732</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-81eb09005e5b68f223bc12daad78275cb6fff7f3d192f369dfb3af48e083f4be3</cites><orcidid>0000-0002-0173-9515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059709053/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059709053?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Cao, Yuanhao</creatorcontrib><creatorcontrib>Luo, Chunzeng</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Kang, Do-Hyuk</creatorcontrib><creatorcontrib>Fang, Yiwen</creatorcontrib><creatorcontrib>Pan, Jinmei</creatorcontrib><title>A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models</title><title>Remote sensing (Basel, Switzerland)</title><description>The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radiative transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify those internal parameters in the snow hydrology and RT models that lack observational records. The modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä, Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary, this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a snow hydrology model and a radiative transfer model. This approach ensures physically realistic retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s performance, including observation time intervals and combinations of microwave observation channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal SWE retrieval performance.</description><subject>assimilation framework</subject><subject>Brightness temperature</subject><subject>Climate change</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Coupling</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>dense medium radiative transfer (DMRT) model</subject><subject>ensemble Kalman filter (EnKF)</subject><subject>Environmental aspects</subject><subject>Equivalence</subject><subject>Grain size</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Measurement</subject><subject>Microwave scattering</subject><subject>Mie scattering</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Radiative transfer</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Snow</subject><subject>Snow depth</subject><subject>snow hydrology model</subject><subject>snow microwave remote sensing</subject><subject>snow water equivalent (SWE) retrieval</subject><subject>Snow-water equivalent</subject><subject>Snowpack</subject><subject>Stream flow</subject><subject>Water</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUILCWku-QWC3ApO9LWr1dG4-YKEljQlRzErjYzc9cqW1jb-91HqkHTmMDOPeY_HTFWdM3ophKZXKbOGUaYEP6pOOFV8IrnmX_7rj6uznBe0hBBMU3lSrafk9xB35AVGTOR6vQlb6HEYyROOKWAZyE2CJe5i-ktmcbPqwzAn7Ae527sU-zjfExgc-QU5hy2Sx2BT3EHpnsAFGN-w5wRD9kX9MTrs87fqq4c-49l7Pa3-3Fw_z-4mDz9v72fTh4kVtR4nLcOOakprrLum9ZyLzjLuAJxquapt13jvlReOae5Fo53vBHjZIm2Flx2K0-r-oOsiLMwqhSWkvYkQzD8gprmBNAbbo3Gu4Zx1HME62TVUNwrAe-u0VKJtVdG6OGitUlxvMI9mETdpKPaNoLVWxWgtytblYWteTmjC4OOYwJZ0uAw2DuhDwadK11K2gstC-H4glKPlnNB_2GTUvL3UfL5UvAL_JJPq</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Cao, Yuanhao</creator><creator>Luo, Chunzeng</creator><creator>Tan, Shurun</creator><creator>Kang, Do-Hyuk</creator><creator>Fang, Yiwen</creator><creator>Pan, Jinmei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0173-9515</orcidid></search><sort><creationdate>20240501</creationdate><title>A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models</title><author>Cao, Yuanhao ; Luo, Chunzeng ; Tan, Shurun ; Kang, Do-Hyuk ; Fang, Yiwen ; Pan, Jinmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-81eb09005e5b68f223bc12daad78275cb6fff7f3d192f369dfb3af48e083f4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>assimilation framework</topic><topic>Brightness temperature</topic><topic>Climate change</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Coupling</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>dense medium radiative transfer (DMRT) model</topic><topic>ensemble Kalman filter (EnKF)</topic><topic>Environmental aspects</topic><topic>Equivalence</topic><topic>Grain size</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Measurement</topic><topic>Microwave scattering</topic><topic>Mie scattering</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Radiative transfer</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Snow</topic><topic>Snow depth</topic><topic>snow hydrology model</topic><topic>snow microwave remote sensing</topic><topic>snow water equivalent (SWE) retrieval</topic><topic>Snow-water equivalent</topic><topic>Snowpack</topic><topic>Stream flow</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuanhao</creatorcontrib><creatorcontrib>Luo, Chunzeng</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Kang, Do-Hyuk</creatorcontrib><creatorcontrib>Fang, Yiwen</creatorcontrib><creatorcontrib>Pan, Jinmei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuanhao</au><au>Luo, Chunzeng</au><au>Tan, Shurun</au><au>Kang, Do-Hyuk</au><au>Fang, Yiwen</au><au>Pan, Jinmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>10</issue><spage>1732</spage><pages>1732-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The retrieval of continuous snow water equivalent (SWE) directly from passive microwave observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowledge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radiative transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify those internal parameters in the snow hydrology and RT models that lack observational records. The modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä, Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary, this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a snow hydrology model and a radiative transfer model. This approach ensures physically realistic retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s performance, including observation time intervals and combinations of microwave observation channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal SWE retrieval performance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16101732</doi><orcidid>https://orcid.org/0000-0002-0173-9515</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2024-05, Vol.16 (10), p.1732 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dd6221b2eacd4b60967aaffcd9473887 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | assimilation framework Brightness temperature Climate change Comparative analysis Computer simulation Computer-generated environments Coupling Data assimilation Data collection dense medium radiative transfer (DMRT) model ensemble Kalman filter (EnKF) Environmental aspects Equivalence Grain size Hydrologic cycle Hydrologic models Hydrology Kalman filtering Kalman filters Measurement Microwave scattering Mie scattering Parameters Physical properties Radiative transfer Remote sensing Retrieval Snow Snow depth snow hydrology model snow microwave remote sensing snow water equivalent (SWE) retrieval Snow-water equivalent Snowpack Stream flow Water |
title | A Snow Water Equivalent Retrieval Framework Coupling 1D Hydrology and Passive Microwave Radiative Transfer Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Snow%20Water%20Equivalent%20Retrieval%20Framework%20Coupling%201D%20Hydrology%20and%20Passive%20Microwave%20Radiative%20Transfer%20Models&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Cao,%20Yuanhao&rft.date=2024-05-01&rft.volume=16&rft.issue=10&rft.spage=1732&rft.pages=1732-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16101732&rft_dat=%3Cgale_doaj_%3EA795448324%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-81eb09005e5b68f223bc12daad78275cb6fff7f3d192f369dfb3af48e083f4be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059709053&rft_id=info:pmid/&rft_galeid=A795448324&rfr_iscdi=true |