Loading…

Studying hematopoiesis using single-cell technologies

Hematopoiesis is probably the best-understood stem cell differentiation system; hematopoietic stem cell (HSC) transplantation represents the most widely used regenerative therapy. The classical view of lineage hierarchy in hematopoiesis is built on cell type definition system by a group of cell surf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hematology and oncology 2017-01, Vol.10 (1), p.27-27, Article 27
Main Authors: Ye, Fang, Huang, Wentao, Guo, Guoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hematopoiesis is probably the best-understood stem cell differentiation system; hematopoietic stem cell (HSC) transplantation represents the most widely used regenerative therapy. The classical view of lineage hierarchy in hematopoiesis is built on cell type definition system by a group of cell surface markers. However, the traditional model is facing increasing challenges, as many classical cell types are proved to be heterogeneous. Recently, the developments of new technologies allow genome, transcriptome, proteome, and epigenome analysis at the single-cell level. For the first time, we can study hematopoietic system at single-cell resolution on a multi-omic scale. Here, we review recent technical advances in single-cell analysis technology, as well as their current applications. We will also discuss the impact of single-cell technologies on both basic research and clinical application in hematology.
ISSN:1756-8722
1756-8722
DOI:10.1186/s13045-017-0401-7