Loading…
Network pharmacology analysis and experimental validation to explore the mechanism of Bushao Tiaozhi capsule (BSTZC) on hyperlipidemia
Bushao Tiaozhi Capsule (BSTZC) is a novel drug in China that is used in clinical practice and has significant therapeutic effects on hyperlipidemia (HLP). In our previous study, BSTZC has a good regulatory effect on lipid metabolism of HLP rats. However, its bioactive compounds, potential targets, a...
Saved in:
Published in: | Scientific reports 2022-04, Vol.12 (1), p.6992-6992, Article 6992 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bushao Tiaozhi Capsule (BSTZC) is a novel drug in China that is used in clinical practice and has significant therapeutic effects on hyperlipidemia (HLP). In our previous study, BSTZC has a good regulatory effect on lipid metabolism of HLP rats. However, its bioactive compounds, potential targets, and underlying mechanism remain largely unclear. We extracted the active ingredients and targets in BSTZC from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature mining. Subsequently, core ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including constructed Drug-Ingredient-Gene symbols-Disease (D-I-G-D), protein–protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the reliability of the core targets was evaluated using in vivo studies. A total of 36 bioactive ingredients and 209 gene targets were identified in BSTZC. The network analysis revealed that quercetin, kaempferol, wogonin, isorhamnetin, baicalein and luteolin may be the core ingredients. The 26 core targets of BSTZC, including IL-6, TNF, VEGFA, and CASP3, were considered potential therapeutic targets. Furthermore, GO and KEGG analyses indicated that the treatment of HLP by BSTZC might be related to lipopolysaccharide, oxidative stress, inflammatory response and cell proliferation, differentiation and apoptosis. The pathway analysis showed enrichment for different pathways like MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic, IL-17 signaling pathway and TNF signaling pathway. In this study, network pharmacology analysis, and experiment verification were combined, and revealed that BSTZC may regulate key inflammatory markers and apoptosis for ameliorating HLP. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-11139-2 |