Loading…

Weak Localization in Graphene: Theory, Simulations, and Experiments

We provide a comprehensive picture of magnetotransport in graphene monolayers in the limit of nonquantizing magnetic fields. We discuss the effects of two-carrier transport, weak localization, weak antilocalization, and strong localization for graphene devices of various mobilities, through theory,...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-8
Main Authors: Yu, Victor, Whiteway, Eric, Massicotte, Mathieu, Hilke, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3
cites cdi_FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3
container_end_page 8
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Yu, Victor
Whiteway, Eric
Massicotte, Mathieu
Hilke, Michael
description We provide a comprehensive picture of magnetotransport in graphene monolayers in the limit of nonquantizing magnetic fields. We discuss the effects of two-carrier transport, weak localization, weak antilocalization, and strong localization for graphene devices of various mobilities, through theory, experiments, and numerical simulations. In particular, we observe a minimum in the weak localization and strong localization length reminiscent of the minimum in the conductivity, which allows us to make the connection between weak and strong localization. This provides a unified framework for both localizations, which explains the observed experimental features. We compare these results to numerical simulation and find a remarkable agreement between theory, experiment, and numerics. Various graphene devices were used in this study, including graphene on different substrates, such as glass and silicon, as well as low and high mobility devices.
doi_str_mv 10.1155/2014/737296
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dda7481a6ded415db6e309f43ed93688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712827</galeid><doaj_id>oai_doaj_org_article_dda7481a6ded415db6e309f43ed93688</doaj_id><sourcerecordid>A413712827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EomngxB2txAVBt_W3vRyQqqiUSpE4UAQ3y2vPJg4bO3gTSvn1ON1StZyQD5ZmnvedGXsQekHwMSFCnFBM-IliijbyEZoQwVStOP_2GE0oE7KWhOMDdDgMK4yZVkQ8RQdUYMK05BM0-wr2ezVPzvbht92GFKsQq_NsN0uI8K66XELK10fV57De9Tf54aiy0VdnvzaQwxridniGnnS2H-D57T1FXz6cXc4-1vNP5xez03ntJNPbWnfKOSJt6y33wlPqccNaKiR1wjvCKXXUNoR6zZRW3luCiXCt9uA1COHZFF2Mvj7ZldmU6jZfm2SDuQmkvDA2b4PrwRS14ppYWcScCN9KYLjpOAPfMKl18Xo_em127Rq8K3Nk2z8wfZiJYWkW6afhWGFeGp-i17cGOf3YwbA16zA46HsbIe0GQwTnimNB97Ve_YOu0i7H8lSFElQ2TDe8UMcjtbBlgBC7VOq6cjysg0sRulDip5wwRaimqgjejgKX0zBk6O66J9jsN8PsN8OMm1Hol_cHvmP_rkIB3ozAMkRvr8L_uUFBoLP3YIHL_7E_3uvJFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552693894</pqid></control><display><type>article</type><title>Weak Localization in Graphene: Theory, Simulations, and Experiments</title><source>Wiley-Blackwell Open Access Collection</source><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Victor ; Whiteway, Eric ; Massicotte, Mathieu ; Hilke, Michael</creator><contributor>Chiou, Jau-Wern</contributor><creatorcontrib>Yu, Victor ; Whiteway, Eric ; Massicotte, Mathieu ; Hilke, Michael ; Chiou, Jau-Wern</creatorcontrib><description>We provide a comprehensive picture of magnetotransport in graphene monolayers in the limit of nonquantizing magnetic fields. We discuss the effects of two-carrier transport, weak localization, weak antilocalization, and strong localization for graphene devices of various mobilities, through theory, experiments, and numerical simulations. In particular, we observe a minimum in the weak localization and strong localization length reminiscent of the minimum in the conductivity, which allows us to make the connection between weak and strong localization. This provides a unified framework for both localizations, which explains the observed experimental features. We compare these results to numerical simulation and find a remarkable agreement between theory, experiment, and numerics. Various graphene devices were used in this study, including graphene on different substrates, such as glass and silicon, as well as low and high mobility devices.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/737296</identifier><identifier>PMID: 25013864</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Bands ; Graphene ; Graphite - chemistry ; Magnetic Fields ; Magnetic properties ; Models, Theoretical ; Observations ; Semiconductors ; Theory</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-8</ispartof><rights>Copyright © 2014 Michael Hilke et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Michael Hilke et al. Michael Hilke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Michael Hilke et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3</citedby><cites>FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552693894/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552693894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25013864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chiou, Jau-Wern</contributor><creatorcontrib>Yu, Victor</creatorcontrib><creatorcontrib>Whiteway, Eric</creatorcontrib><creatorcontrib>Massicotte, Mathieu</creatorcontrib><creatorcontrib>Hilke, Michael</creatorcontrib><title>Weak Localization in Graphene: Theory, Simulations, and Experiments</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>We provide a comprehensive picture of magnetotransport in graphene monolayers in the limit of nonquantizing magnetic fields. We discuss the effects of two-carrier transport, weak localization, weak antilocalization, and strong localization for graphene devices of various mobilities, through theory, experiments, and numerical simulations. In particular, we observe a minimum in the weak localization and strong localization length reminiscent of the minimum in the conductivity, which allows us to make the connection between weak and strong localization. This provides a unified framework for both localizations, which explains the observed experimental features. We compare these results to numerical simulation and find a remarkable agreement between theory, experiment, and numerics. Various graphene devices were used in this study, including graphene on different substrates, such as glass and silicon, as well as low and high mobility devices.</description><subject>Bands</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Magnetic Fields</subject><subject>Magnetic properties</subject><subject>Models, Theoretical</subject><subject>Observations</subject><subject>Semiconductors</subject><subject>Theory</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhi0EomngxB2txAVBt_W3vRyQqqiUSpE4UAQ3y2vPJg4bO3gTSvn1ON1StZyQD5ZmnvedGXsQekHwMSFCnFBM-IliijbyEZoQwVStOP_2GE0oE7KWhOMDdDgMK4yZVkQ8RQdUYMK05BM0-wr2ezVPzvbht92GFKsQq_NsN0uI8K66XELK10fV57De9Tf54aiy0VdnvzaQwxridniGnnS2H-D57T1FXz6cXc4-1vNP5xez03ntJNPbWnfKOSJt6y33wlPqccNaKiR1wjvCKXXUNoR6zZRW3luCiXCt9uA1COHZFF2Mvj7ZldmU6jZfm2SDuQmkvDA2b4PrwRS14ppYWcScCN9KYLjpOAPfMKl18Xo_em127Rq8K3Nk2z8wfZiJYWkW6afhWGFeGp-i17cGOf3YwbA16zA46HsbIe0GQwTnimNB97Ve_YOu0i7H8lSFElQ2TDe8UMcjtbBlgBC7VOq6cjysg0sRulDip5wwRaimqgjejgKX0zBk6O66J9jsN8PsN8OMm1Hol_cHvmP_rkIB3ozAMkRvr8L_uUFBoLP3YIHL_7E_3uvJFw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Yu, Victor</creator><creator>Whiteway, Eric</creator><creator>Massicotte, Mathieu</creator><creator>Hilke, Michael</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Weak Localization in Graphene: Theory, Simulations, and Experiments</title><author>Yu, Victor ; Whiteway, Eric ; Massicotte, Mathieu ; Hilke, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bands</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Magnetic Fields</topic><topic>Magnetic properties</topic><topic>Models, Theoretical</topic><topic>Observations</topic><topic>Semiconductors</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Victor</creatorcontrib><creatorcontrib>Whiteway, Eric</creatorcontrib><creatorcontrib>Massicotte, Mathieu</creatorcontrib><creatorcontrib>Hilke, Michael</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Victor</au><au>Whiteway, Eric</au><au>Massicotte, Mathieu</au><au>Hilke, Michael</au><au>Chiou, Jau-Wern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Localization in Graphene: Theory, Simulations, and Experiments</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>We provide a comprehensive picture of magnetotransport in graphene monolayers in the limit of nonquantizing magnetic fields. We discuss the effects of two-carrier transport, weak localization, weak antilocalization, and strong localization for graphene devices of various mobilities, through theory, experiments, and numerical simulations. In particular, we observe a minimum in the weak localization and strong localization length reminiscent of the minimum in the conductivity, which allows us to make the connection between weak and strong localization. This provides a unified framework for both localizations, which explains the observed experimental features. We compare these results to numerical simulation and find a remarkable agreement between theory, experiment, and numerics. Various graphene devices were used in this study, including graphene on different substrates, such as glass and silicon, as well as low and high mobility devices.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25013864</pmid><doi>10.1155/2014/737296</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-8
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dda7481a6ded415db6e309f43ed93688
source Wiley-Blackwell Open Access Collection; ProQuest - Publicly Available Content Database; PubMed Central
subjects Bands
Graphene
Graphite - chemistry
Magnetic Fields
Magnetic properties
Models, Theoretical
Observations
Semiconductors
Theory
title Weak Localization in Graphene: Theory, Simulations, and Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Localization%20in%20Graphene:%20Theory,%20Simulations,%20and%20Experiments&rft.jtitle=TheScientificWorld&rft.au=Yu,%20Victor&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/737296&rft_dat=%3Cgale_doaj_%3EA413712827%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c638t-8f7cc16abda4d5d22d093b2562c5dc1422c2a912d83787dda1015cb8ded8e55d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552693894&rft_id=info:pmid/25013864&rft_galeid=A413712827&rfr_iscdi=true