Loading…
From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective
The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active...
Saved in:
Published in: | Nanophotonics (Berlin, Germany) Germany), 2018-01, Vol.7 (1), p.81-92 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73 |
container_end_page | 92 |
container_issue | 1 |
container_start_page | 81 |
container_title | Nanophotonics (Berlin, Germany) |
container_volume | 7 |
creator | Gruber, J. Michael Malý, Pavel Krüger, Tjaart P.J. Grondelle, Rienk van |
description | The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10–20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger
systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function. |
doi_str_mv | 10.1515/nanoph-2017-0014 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ddbe1b6beb2f41f1aaadbdf8626502fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ddbe1b6beb2f41f1aaadbdf8626502fb</doaj_id><sourcerecordid>1965472627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73</originalsourceid><addsrcrecordid>eNp1UcFu1DAQjRBIVKV3jpY4BzxO7MSIC6poqVSpl3K2xvF4N4sTBztb2L_HS1DFhZFGMxrNe280r6reAn8PEuSHGee47GvBoas5h_ZFdSFAi7pX0L587rl6XV3lfOAltG5Aq4sKb1Kc2JhjwJUcC-Nuv9Z7TE-U13HesSFOS6BflNka2bqnkqeA3-Po2ESTTTjTR4Ysl91A9RQDDcdAbKGUFxrW8YneVK88hkxXf-tl9e3my-P11_r-4fbu-vN9PbSNWGuUnrT2fhCSg-s6VBotaWf7tiGnfet635cJIfSyAekcCN8MquMNCem65rK623hdxINZ0jhhOpmIo_kziGlnMK3jEMg4ZwmssmSFb8EDIjrrfK-Eklx4W7jebVxLij-O5RXmEI9pLueb8jXZdkKJsyLftoYUc07kn1WBm7MvZvPFnH0xZ18K5NMG-YlhpeRol46n0vzD_x9oBz00vwHGxpkT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965472627</pqid></control><display><type>article</type><title>From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective</title><source>Sciendo (De Gruyter) Open Access Journals</source><source>Publicly Available Content Database</source><creator>Gruber, J. Michael ; Malý, Pavel ; Krüger, Tjaart P.J. ; Grondelle, Rienk van</creator><creatorcontrib>Gruber, J. Michael ; Malý, Pavel ; Krüger, Tjaart P.J. ; Grondelle, Rienk van</creatorcontrib><description>The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10–20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger
systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.</description><identifier>ISSN: 2192-8606</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2017-0014</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Biological effects ; Biological properties ; Catalysis ; Chemical energy ; Chlorophyll ; Clean energy ; Fluorescence ; fluorescence blinking ; fluorescence lifetime ; Light ; light-harvesting ; lipid environment ; Machinery and equipment ; photosystem II ; Pigments ; Plants (botany) ; protein disorder ; Quenching ; single-molecule spectroscopy ; Solar radiation</subject><ispartof>Nanophotonics (Berlin, Germany), 2018-01, Vol.7 (1), p.81-92</ispartof><rights>Copyright Walter de Gruyter GmbH 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73</citedby><cites>FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/nanoph-2017-0014/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965472627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,66904,68688</link.rule.ids></links><search><creatorcontrib>Gruber, J. Michael</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>Krüger, Tjaart P.J.</creatorcontrib><creatorcontrib>Grondelle, Rienk van</creatorcontrib><title>From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective</title><title>Nanophotonics (Berlin, Germany)</title><description>The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10–20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger
systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Catalysis</subject><subject>Chemical energy</subject><subject>Chlorophyll</subject><subject>Clean energy</subject><subject>Fluorescence</subject><subject>fluorescence blinking</subject><subject>fluorescence lifetime</subject><subject>Light</subject><subject>light-harvesting</subject><subject>lipid environment</subject><subject>Machinery and equipment</subject><subject>photosystem II</subject><subject>Pigments</subject><subject>Plants (botany)</subject><subject>protein disorder</subject><subject>Quenching</subject><subject>single-molecule spectroscopy</subject><subject>Solar radiation</subject><issn>2192-8606</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFu1DAQjRBIVKV3jpY4BzxO7MSIC6poqVSpl3K2xvF4N4sTBztb2L_HS1DFhZFGMxrNe280r6reAn8PEuSHGee47GvBoas5h_ZFdSFAi7pX0L587rl6XV3lfOAltG5Aq4sKb1Kc2JhjwJUcC-Nuv9Z7TE-U13HesSFOS6BflNka2bqnkqeA3-Po2ESTTTjTR4Ysl91A9RQDDcdAbKGUFxrW8YneVK88hkxXf-tl9e3my-P11_r-4fbu-vN9PbSNWGuUnrT2fhCSg-s6VBotaWf7tiGnfet635cJIfSyAekcCN8MquMNCem65rK623hdxINZ0jhhOpmIo_kziGlnMK3jEMg4ZwmssmSFb8EDIjrrfK-Eklx4W7jebVxLij-O5RXmEI9pLueb8jXZdkKJsyLftoYUc07kn1WBm7MvZvPFnH0xZ18K5NMG-YlhpeRol46n0vzD_x9oBz00vwHGxpkT</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gruber, J. Michael</creator><creator>Malý, Pavel</creator><creator>Krüger, Tjaart P.J.</creator><creator>Grondelle, Rienk van</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective</title><author>Gruber, J. Michael ; Malý, Pavel ; Krüger, Tjaart P.J. ; Grondelle, Rienk van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Catalysis</topic><topic>Chemical energy</topic><topic>Chlorophyll</topic><topic>Clean energy</topic><topic>Fluorescence</topic><topic>fluorescence blinking</topic><topic>fluorescence lifetime</topic><topic>Light</topic><topic>light-harvesting</topic><topic>lipid environment</topic><topic>Machinery and equipment</topic><topic>photosystem II</topic><topic>Pigments</topic><topic>Plants (botany)</topic><topic>protein disorder</topic><topic>Quenching</topic><topic>single-molecule spectroscopy</topic><topic>Solar radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, J. Michael</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>Krüger, Tjaart P.J.</creatorcontrib><creatorcontrib>Grondelle, Rienk van</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, J. Michael</au><au>Malý, Pavel</au><au>Krüger, Tjaart P.J.</au><au>Grondelle, Rienk van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>7</volume><issue>1</issue><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>2192-8606</issn><eissn>2192-8614</eissn><abstract>The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10–20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger
systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/nanoph-2017-0014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-8606 |
ispartof | Nanophotonics (Berlin, Germany), 2018-01, Vol.7 (1), p.81-92 |
issn | 2192-8606 2192-8614 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ddbe1b6beb2f41f1aaadbdf8626502fb |
source | Sciendo (De Gruyter) Open Access Journals; Publicly Available Content Database |
subjects | Biological effects Biological properties Catalysis Chemical energy Chlorophyll Clean energy Fluorescence fluorescence blinking fluorescence lifetime Light light-harvesting lipid environment Machinery and equipment photosystem II Pigments Plants (botany) protein disorder Quenching single-molecule spectroscopy Solar radiation |
title | From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20isolated%20light-harvesting%20complexes%20to%20the%20thylakoid%20membrane:%20a%20single-molecule%20perspective&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Gruber,%20J.%20Michael&rft.date=2018-01-01&rft.volume=7&rft.issue=1&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=2192-8606&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2017-0014&rft_dat=%3Cproquest_doaj_%3E1965472627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-a5fe99ffc2501d77a69abe9db843ed9f4d8f8abeea185315dd12f3c6703e25d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965472627&rft_id=info:pmid/&rfr_iscdi=true |