Loading…
Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential
Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, indu...
Saved in:
Published in: | Scientific reports 2024-10, Vol.14 (1), p.24182-16, Article 24182 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 24182 |
container_title | Scientific reports |
container_volume | 14 |
creator | Gao, Hong Pathan, Saliha Dixon, Beverly R. E. A. Pugazenthi, Aarthi Mathison, Megumi Mohamed, Tamer M.A. Rosengart, Todd K. Yang, Jianchang |
description | Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice (
n
= 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering. |
doi_str_mv | 10.1038/s41598-024-73975-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0</doaj_id><sourcerecordid>3116761146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdRbKn9Ay4k4MbNaL4zWYmUWgsFF-o6nMnHbS5zJ9ckY-m_N7dTa-vCbBLyvufJOeHtutcEvyeYDR8KJ0IPPaa8V0wr0Q_PumOKuegpo_T5o_NRd1rKFrclqOZEv-yOmOZYKiWPu-UbTBNHMDt0ARU4irNbrEcWsotgUYhjTuMEpaKaYS6xxjSjmm6aXhCgPeQaG-IW7Zapxn2qfq6oVKge3cR6vYLSxs_RolVt9lfdiwBT8af3-0n34_P597Mv_dXXi8uzT1e9ZWqovSU4DEFhpoXlYhyw13wgHhhR2GGhqQjAtSNc4dFLJoOyQupxDJRrOXLMTrrLlesSbM0-xx3kW5MgmruLlDfm0L-dvHHOjZQGHSQW3FMJWhI6UDlSEIT5A-vjytov48472ybJMD2BPlXmeG026ZchhA-YcdkI7-4JOf1cfKlmF4v10wSzT0sxjLS5FKNYN-vbf6zbtOS5_dXBJZVs0AOQri6bUynZh4duCDaHlJg1JaalxNylxAyt6M3jOR5K_mSiGdhqKE2aNz7_ffs_2N-nnMjC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116761146</pqid></control><display><type>article</type><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</creator><creatorcontrib>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</creatorcontrib><description>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice (
n
= 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-73975-8</identifier><identifier>PMID: 39406776</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 631/532 ; 631/80 ; 692/308 ; 692/4019 ; AKT protein ; Alkaline phosphatase ; Animals ; Cardiac regeneration ; Cardiomyocytes ; Cardiovascular diseases ; Cell Differentiation ; Cellular Reprogramming ; Coronary artery disease ; DNA-Binding Proteins ; Embryo cells ; Embryo fibroblasts ; Embryogenesis ; Endothelial cells ; Epigenetics ; Fibroblasts ; Fibroblasts - metabolism ; GATA4 Transcription Factor - genetics ; GATA4 Transcription Factor - metabolism ; Heart diseases ; Homeobox Protein Nkx-2.5 - genetics ; Homeobox Protein Nkx-2.5 - metabolism ; Humanities and Social Sciences ; Humans ; Ischemia ; Mice ; multidisciplinary ; Multipotent Stem Cells - cytology ; Multipotent Stem Cells - metabolism ; Myocardium - cytology ; Myocardium - metabolism ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Nkx2.5 protein ; Oct-4 protein ; Oct4 ; Partial reprogramming ; Pluripotency ; Protein interaction ; Rats ; Science ; Science (multidisciplinary) ; Signal Transduction ; Sox17 ; Stem cells ; Tissue engineering ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptomics ; Wnt protein</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.24182-16, Article 24182</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116761146/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116761146?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39406776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Pathan, Saliha</creatorcontrib><creatorcontrib>Dixon, Beverly R. E. A.</creatorcontrib><creatorcontrib>Pugazenthi, Aarthi</creatorcontrib><creatorcontrib>Mathison, Megumi</creatorcontrib><creatorcontrib>Mohamed, Tamer M.A.</creatorcontrib><creatorcontrib>Rosengart, Todd K.</creatorcontrib><creatorcontrib>Yang, Jianchang</creatorcontrib><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice (
n
= 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>631/532</subject><subject>631/80</subject><subject>692/308</subject><subject>692/4019</subject><subject>AKT protein</subject><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Cardiac regeneration</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell Differentiation</subject><subject>Cellular Reprogramming</subject><subject>Coronary artery disease</subject><subject>DNA-Binding Proteins</subject><subject>Embryo cells</subject><subject>Embryo fibroblasts</subject><subject>Embryogenesis</subject><subject>Endothelial cells</subject><subject>Epigenetics</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>GATA4 Transcription Factor - genetics</subject><subject>GATA4 Transcription Factor - metabolism</subject><subject>Heart diseases</subject><subject>Homeobox Protein Nkx-2.5 - genetics</subject><subject>Homeobox Protein Nkx-2.5 - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multipotent Stem Cells - cytology</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nkx2.5 protein</subject><subject>Oct-4 protein</subject><subject>Oct4</subject><subject>Partial reprogramming</subject><subject>Pluripotency</subject><subject>Protein interaction</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Sox17</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptomics</subject><subject>Wnt protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1rFTEUhgdRbKn9Ay4k4MbNaL4zWYmUWgsFF-o6nMnHbS5zJ9ckY-m_N7dTa-vCbBLyvufJOeHtutcEvyeYDR8KJ0IPPaa8V0wr0Q_PumOKuegpo_T5o_NRd1rKFrclqOZEv-yOmOZYKiWPu-UbTBNHMDt0ARU4irNbrEcWsotgUYhjTuMEpaKaYS6xxjSjmm6aXhCgPeQaG-IW7Zapxn2qfq6oVKge3cR6vYLSxs_RolVt9lfdiwBT8af3-0n34_P597Mv_dXXi8uzT1e9ZWqovSU4DEFhpoXlYhyw13wgHhhR2GGhqQjAtSNc4dFLJoOyQupxDJRrOXLMTrrLlesSbM0-xx3kW5MgmruLlDfm0L-dvHHOjZQGHSQW3FMJWhI6UDlSEIT5A-vjytov48472ybJMD2BPlXmeG026ZchhA-YcdkI7-4JOf1cfKlmF4v10wSzT0sxjLS5FKNYN-vbf6zbtOS5_dXBJZVs0AOQri6bUynZh4duCDaHlJg1JaalxNylxAyt6M3jOR5K_mSiGdhqKE2aNz7_ffs_2N-nnMjC</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Gao, Hong</creator><creator>Pathan, Saliha</creator><creator>Dixon, Beverly R. E. A.</creator><creator>Pugazenthi, Aarthi</creator><creator>Mathison, Megumi</creator><creator>Mohamed, Tamer M.A.</creator><creator>Rosengart, Todd K.</creator><creator>Yang, Jianchang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241015</creationdate><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><author>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>631/532</topic><topic>631/80</topic><topic>692/308</topic><topic>692/4019</topic><topic>AKT protein</topic><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Cardiac regeneration</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell Differentiation</topic><topic>Cellular Reprogramming</topic><topic>Coronary artery disease</topic><topic>DNA-Binding Proteins</topic><topic>Embryo cells</topic><topic>Embryo fibroblasts</topic><topic>Embryogenesis</topic><topic>Endothelial cells</topic><topic>Epigenetics</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>GATA4 Transcription Factor - genetics</topic><topic>GATA4 Transcription Factor - metabolism</topic><topic>Heart diseases</topic><topic>Homeobox Protein Nkx-2.5 - genetics</topic><topic>Homeobox Protein Nkx-2.5 - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multipotent Stem Cells - cytology</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nkx2.5 protein</topic><topic>Oct-4 protein</topic><topic>Oct4</topic><topic>Partial reprogramming</topic><topic>Pluripotency</topic><topic>Protein interaction</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Sox17</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptomics</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Pathan, Saliha</creatorcontrib><creatorcontrib>Dixon, Beverly R. E. A.</creatorcontrib><creatorcontrib>Pugazenthi, Aarthi</creatorcontrib><creatorcontrib>Mathison, Megumi</creatorcontrib><creatorcontrib>Mohamed, Tamer M.A.</creatorcontrib><creatorcontrib>Rosengart, Todd K.</creatorcontrib><creatorcontrib>Yang, Jianchang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hong</au><au>Pathan, Saliha</au><au>Dixon, Beverly R. E. A.</au><au>Pugazenthi, Aarthi</au><au>Mathison, Megumi</au><au>Mohamed, Tamer M.A.</au><au>Rosengart, Todd K.</au><au>Yang, Jianchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>24182</spage><epage>16</epage><pages>24182-16</pages><artnum>24182</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice (
n
= 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39406776</pmid><doi>10.1038/s41598-024-73975-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-10, Vol.14 (1), p.24182-16, Article 24182 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 1-Phosphatidylinositol 3-kinase 631/532 631/80 692/308 692/4019 AKT protein Alkaline phosphatase Animals Cardiac regeneration Cardiomyocytes Cardiovascular diseases Cell Differentiation Cellular Reprogramming Coronary artery disease DNA-Binding Proteins Embryo cells Embryo fibroblasts Embryogenesis Endothelial cells Epigenetics Fibroblasts Fibroblasts - metabolism GATA4 Transcription Factor - genetics GATA4 Transcription Factor - metabolism Heart diseases Homeobox Protein Nkx-2.5 - genetics Homeobox Protein Nkx-2.5 - metabolism Humanities and Social Sciences Humans Ischemia Mice multidisciplinary Multipotent Stem Cells - cytology Multipotent Stem Cells - metabolism Myocardium - cytology Myocardium - metabolism Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Nkx2.5 protein Oct-4 protein Oct4 Partial reprogramming Pluripotency Protein interaction Rats Science Science (multidisciplinary) Signal Transduction Sox17 Stem cells Tissue engineering Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transcriptomics Wnt protein |
title | Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sall4%20and%20Gata4%20induce%20cardiac%20fibroblast%20transition%20towards%20a%20partially%20multipotent%20state%20with%20cardiogenic%20potential&rft.jtitle=Scientific%20reports&rft.au=Gao,%20Hong&rft.date=2024-10-15&rft.volume=14&rft.issue=1&rft.spage=24182&rft.epage=16&rft.pages=24182-16&rft.artnum=24182&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-73975-8&rft_dat=%3Cproquest_doaj_%3E3116761146%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116761146&rft_id=info:pmid/39406776&rfr_iscdi=true |