Loading…

Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential

Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, indu...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.24182-16, Article 24182
Main Authors: Gao, Hong, Pathan, Saliha, Dixon, Beverly R. E. A., Pugazenthi, Aarthi, Mathison, Megumi, Mohamed, Tamer M.A., Rosengart, Todd K., Yang, Jianchang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403
container_end_page 16
container_issue 1
container_start_page 24182
container_title Scientific reports
container_volume 14
creator Gao, Hong
Pathan, Saliha
Dixon, Beverly R. E. A.
Pugazenthi, Aarthi
Mathison, Megumi
Mohamed, Tamer M.A.
Rosengart, Todd K.
Yang, Jianchang
description Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice ( n  = 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.
doi_str_mv 10.1038/s41598-024-73975-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0</doaj_id><sourcerecordid>3116761146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhgdRbKn9Ay4k4MbNaL4zWYmUWgsFF-o6nMnHbS5zJ9ckY-m_N7dTa-vCbBLyvufJOeHtutcEvyeYDR8KJ0IPPaa8V0wr0Q_PumOKuegpo_T5o_NRd1rKFrclqOZEv-yOmOZYKiWPu-UbTBNHMDt0ARU4irNbrEcWsotgUYhjTuMEpaKaYS6xxjSjmm6aXhCgPeQaG-IW7Zapxn2qfq6oVKge3cR6vYLSxs_RolVt9lfdiwBT8af3-0n34_P597Mv_dXXi8uzT1e9ZWqovSU4DEFhpoXlYhyw13wgHhhR2GGhqQjAtSNc4dFLJoOyQupxDJRrOXLMTrrLlesSbM0-xx3kW5MgmruLlDfm0L-dvHHOjZQGHSQW3FMJWhI6UDlSEIT5A-vjytov48472ybJMD2BPlXmeG026ZchhA-YcdkI7-4JOf1cfKlmF4v10wSzT0sxjLS5FKNYN-vbf6zbtOS5_dXBJZVs0AOQri6bUynZh4duCDaHlJg1JaalxNylxAyt6M3jOR5K_mSiGdhqKE2aNz7_ffs_2N-nnMjC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116761146</pqid></control><display><type>article</type><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</creator><creatorcontrib>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</creatorcontrib><description>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice ( n  = 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-73975-8</identifier><identifier>PMID: 39406776</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 631/532 ; 631/80 ; 692/308 ; 692/4019 ; AKT protein ; Alkaline phosphatase ; Animals ; Cardiac regeneration ; Cardiomyocytes ; Cardiovascular diseases ; Cell Differentiation ; Cellular Reprogramming ; Coronary artery disease ; DNA-Binding Proteins ; Embryo cells ; Embryo fibroblasts ; Embryogenesis ; Endothelial cells ; Epigenetics ; Fibroblasts ; Fibroblasts - metabolism ; GATA4 Transcription Factor - genetics ; GATA4 Transcription Factor - metabolism ; Heart diseases ; Homeobox Protein Nkx-2.5 - genetics ; Homeobox Protein Nkx-2.5 - metabolism ; Humanities and Social Sciences ; Humans ; Ischemia ; Mice ; multidisciplinary ; Multipotent Stem Cells - cytology ; Multipotent Stem Cells - metabolism ; Myocardium - cytology ; Myocardium - metabolism ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Nkx2.5 protein ; Oct-4 protein ; Oct4 ; Partial reprogramming ; Pluripotency ; Protein interaction ; Rats ; Science ; Science (multidisciplinary) ; Signal Transduction ; Sox17 ; Stem cells ; Tissue engineering ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptomics ; Wnt protein</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.24182-16, Article 24182</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116761146/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116761146?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39406776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Pathan, Saliha</creatorcontrib><creatorcontrib>Dixon, Beverly R. E. A.</creatorcontrib><creatorcontrib>Pugazenthi, Aarthi</creatorcontrib><creatorcontrib>Mathison, Megumi</creatorcontrib><creatorcontrib>Mohamed, Tamer M.A.</creatorcontrib><creatorcontrib>Rosengart, Todd K.</creatorcontrib><creatorcontrib>Yang, Jianchang</creatorcontrib><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice ( n  = 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>631/532</subject><subject>631/80</subject><subject>692/308</subject><subject>692/4019</subject><subject>AKT protein</subject><subject>Alkaline phosphatase</subject><subject>Animals</subject><subject>Cardiac regeneration</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Cell Differentiation</subject><subject>Cellular Reprogramming</subject><subject>Coronary artery disease</subject><subject>DNA-Binding Proteins</subject><subject>Embryo cells</subject><subject>Embryo fibroblasts</subject><subject>Embryogenesis</subject><subject>Endothelial cells</subject><subject>Epigenetics</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>GATA4 Transcription Factor - genetics</subject><subject>GATA4 Transcription Factor - metabolism</subject><subject>Heart diseases</subject><subject>Homeobox Protein Nkx-2.5 - genetics</subject><subject>Homeobox Protein Nkx-2.5 - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multipotent Stem Cells - cytology</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nkx2.5 protein</subject><subject>Oct-4 protein</subject><subject>Oct4</subject><subject>Partial reprogramming</subject><subject>Pluripotency</subject><subject>Protein interaction</subject><subject>Rats</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Sox17</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptomics</subject><subject>Wnt protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1rFTEUhgdRbKn9Ay4k4MbNaL4zWYmUWgsFF-o6nMnHbS5zJ9ckY-m_N7dTa-vCbBLyvufJOeHtutcEvyeYDR8KJ0IPPaa8V0wr0Q_PumOKuegpo_T5o_NRd1rKFrclqOZEv-yOmOZYKiWPu-UbTBNHMDt0ARU4irNbrEcWsotgUYhjTuMEpaKaYS6xxjSjmm6aXhCgPeQaG-IW7Zapxn2qfq6oVKge3cR6vYLSxs_RolVt9lfdiwBT8af3-0n34_P597Mv_dXXi8uzT1e9ZWqovSU4DEFhpoXlYhyw13wgHhhR2GGhqQjAtSNc4dFLJoOyQupxDJRrOXLMTrrLlesSbM0-xx3kW5MgmruLlDfm0L-dvHHOjZQGHSQW3FMJWhI6UDlSEIT5A-vjytov48472ybJMD2BPlXmeG026ZchhA-YcdkI7-4JOf1cfKlmF4v10wSzT0sxjLS5FKNYN-vbf6zbtOS5_dXBJZVs0AOQri6bUynZh4duCDaHlJg1JaalxNylxAyt6M3jOR5K_mSiGdhqKE2aNz7_ffs_2N-nnMjC</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Gao, Hong</creator><creator>Pathan, Saliha</creator><creator>Dixon, Beverly R. E. A.</creator><creator>Pugazenthi, Aarthi</creator><creator>Mathison, Megumi</creator><creator>Mohamed, Tamer M.A.</creator><creator>Rosengart, Todd K.</creator><creator>Yang, Jianchang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241015</creationdate><title>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</title><author>Gao, Hong ; Pathan, Saliha ; Dixon, Beverly R. E. A. ; Pugazenthi, Aarthi ; Mathison, Megumi ; Mohamed, Tamer M.A. ; Rosengart, Todd K. ; Yang, Jianchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>631/532</topic><topic>631/80</topic><topic>692/308</topic><topic>692/4019</topic><topic>AKT protein</topic><topic>Alkaline phosphatase</topic><topic>Animals</topic><topic>Cardiac regeneration</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Cell Differentiation</topic><topic>Cellular Reprogramming</topic><topic>Coronary artery disease</topic><topic>DNA-Binding Proteins</topic><topic>Embryo cells</topic><topic>Embryo fibroblasts</topic><topic>Embryogenesis</topic><topic>Endothelial cells</topic><topic>Epigenetics</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>GATA4 Transcription Factor - genetics</topic><topic>GATA4 Transcription Factor - metabolism</topic><topic>Heart diseases</topic><topic>Homeobox Protein Nkx-2.5 - genetics</topic><topic>Homeobox Protein Nkx-2.5 - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multipotent Stem Cells - cytology</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nkx2.5 protein</topic><topic>Oct-4 protein</topic><topic>Oct4</topic><topic>Partial reprogramming</topic><topic>Pluripotency</topic><topic>Protein interaction</topic><topic>Rats</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Sox17</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptomics</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Pathan, Saliha</creatorcontrib><creatorcontrib>Dixon, Beverly R. E. A.</creatorcontrib><creatorcontrib>Pugazenthi, Aarthi</creatorcontrib><creatorcontrib>Mathison, Megumi</creatorcontrib><creatorcontrib>Mohamed, Tamer M.A.</creatorcontrib><creatorcontrib>Rosengart, Todd K.</creatorcontrib><creatorcontrib>Yang, Jianchang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hong</au><au>Pathan, Saliha</au><au>Dixon, Beverly R. E. A.</au><au>Pugazenthi, Aarthi</au><au>Mathison, Megumi</au><au>Mohamed, Tamer M.A.</au><au>Rosengart, Todd K.</au><au>Yang, Jianchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>24182</spage><epage>16</epage><pages>24182-16</pages><artnum>24182</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.4% of the expanding cells express Nkx2.5, while 13 ± 3.6% express Oct4. Activated signaling pathways like PI3K/Akt, Hippo, Wnt, and multiple epigenetic modification enzymes are also detected. Under suitable conditions, these cells demonstrate a high susceptibility to differentiating into cardiomyocyte, endothelial cell, and extracardiac neuron-like cells. The presence of partially pluripotent-like cells is characterized by alkaline phosphatase staining, germ layer marker expression, and tumor formation in injected mice ( n  = 5). Additionally, significant stem-like fate transitions and cardiogenic abilities are induced in human cardiac fibroblasts, but not in rat or human skin fibroblasts. Molecularly, we identify that SALL4 and GATA4 physically interact and synergistically stimulate the promoters of pluripotency genes but repress fibrogenic gene, which correlates with a primitive transition process. Together, this study uncovers a new cardiac regenerative mechanism that could potentially advance therapeutic endeavors and tissue engineering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39406776</pmid><doi>10.1038/s41598-024-73975-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-10, Vol.14 (1), p.24182-16, Article 24182
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dddb22f9f6054e26a9612826b2a513e0
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 1-Phosphatidylinositol 3-kinase
631/532
631/80
692/308
692/4019
AKT protein
Alkaline phosphatase
Animals
Cardiac regeneration
Cardiomyocytes
Cardiovascular diseases
Cell Differentiation
Cellular Reprogramming
Coronary artery disease
DNA-Binding Proteins
Embryo cells
Embryo fibroblasts
Embryogenesis
Endothelial cells
Epigenetics
Fibroblasts
Fibroblasts - metabolism
GATA4 Transcription Factor - genetics
GATA4 Transcription Factor - metabolism
Heart diseases
Homeobox Protein Nkx-2.5 - genetics
Homeobox Protein Nkx-2.5 - metabolism
Humanities and Social Sciences
Humans
Ischemia
Mice
multidisciplinary
Multipotent Stem Cells - cytology
Multipotent Stem Cells - metabolism
Myocardium - cytology
Myocardium - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Nkx2.5 protein
Oct-4 protein
Oct4
Partial reprogramming
Pluripotency
Protein interaction
Rats
Science
Science (multidisciplinary)
Signal Transduction
Sox17
Stem cells
Tissue engineering
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptomics
Wnt protein
title Sall4 and Gata4 induce cardiac fibroblast transition towards a partially multipotent state with cardiogenic potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sall4%20and%20Gata4%20induce%20cardiac%20fibroblast%20transition%20towards%20a%20partially%20multipotent%20state%20with%20cardiogenic%20potential&rft.jtitle=Scientific%20reports&rft.au=Gao,%20Hong&rft.date=2024-10-15&rft.volume=14&rft.issue=1&rft.spage=24182&rft.epage=16&rft.pages=24182-16&rft.artnum=24182&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-73975-8&rft_dat=%3Cproquest_doaj_%3E3116761146%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c10f8f70395c45b80e9481ea3170d05925fa49d1470be636f7c569bbf2496b403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116761146&rft_id=info:pmid/39406776&rfr_iscdi=true