Loading…

Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis

The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to ind...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-09, Vol.24 (10), p.1385
Main Authors: Yin, Xiu, Liu, Xiyu, Sun, Minghe, Dong, Jianping, Zhang, Gexiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63
cites cdi_FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63
container_end_page
container_issue 10
container_start_page 1385
container_title Entropy (Basel, Switzerland)
container_volume 24
creator Yin, Xiu
Liu, Xiyu
Sun, Minghe
Dong, Jianping
Zhang, Gexiang
description The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy production rules for motor faults and perform fuzzy reasoning. To perform the inference process, a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The relative preference relationship was used to estimate the severity of various faults, so as to warn and repair the motors in time when minor faults occur. The results of the case studies showed that the FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults and has certain advantages over other existing methods.
doi_str_mv 10.3390/e24101385
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dde3aa11b00e4a0da1ded3f3fdceff90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709295</galeid><doaj_id>oai_doaj_org_article_dde3aa11b00e4a0da1ded3f3fdceff90</doaj_id><sourcerecordid>A745709295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63</originalsourceid><addsrcrecordid>eNpdUstuFDEQHCEQCYEDP4BG4kIOG9qveVyQopCFlcJDBLhavZ724mXG3tgzSJuvx8mGVYJ8sKtcXXa1uiheMjgRooW3xCUDJhr1qDhk0LYzKQAe3zsfFM9SWgNwwVn1tDgQteQgQR0WP-fT9fW2_EaYgnd-VX6eBorOYF9ebtzvW4ammOHX8nKbRhpSaUMsF76bzOiCLz-FMeM5Tv1Yvne48iG59Lx4YrFP9OJuPyp-zM-_n32cXXz5sDg7vZgZKZpx1gjOpamNMEoxAo41tEhCMSTMGFiF3EJnkNWCmwpl3QKnHBYNqWpZiaNisfPtAq71JroB41YHdPqWCHGlMY7O9KS7jgQiY0sAkggdso46YYXtDFnbQvZ6t_PaTMuBMuvHnPuB6cMb737pVfij2wqYamU2eHNnEMPVRGnUg0uG-h49hSlp3gjF60a2dZa-_k-6DlP0uVWa17yRFZfNTbqTnWqFOYDzNuR3TV4dDc4ET9Zl_rSWKveNtyoXHO8KTAwpRbL73zPQN6Oi96OSta_ux90r_82G-AuXJrj5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728462486</pqid></control><display><type>article</type><title>Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Yin, Xiu ; Liu, Xiyu ; Sun, Minghe ; Dong, Jianping ; Zhang, Gexiang</creator><creatorcontrib>Yin, Xiu ; Liu, Xiyu ; Sun, Minghe ; Dong, Jianping ; Zhang, Gexiang</creatorcontrib><description>The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy production rules for motor faults and perform fuzzy reasoning. To perform the inference process, a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The relative preference relationship was used to estimate the severity of various faults, so as to warn and repair the motors in time when minor faults occur. The results of the case studies showed that the FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults and has certain advantages over other existing methods.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24101385</identifier><identifier>PMID: 37420405</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Boolean ; Fault diagnosis ; Fault location (Engineering) ; Faults ; Fuzzy algorithms ; Fuzzy logic ; fuzzy reasoning numerical spiking neural P systems ; Fuzzy systems ; Induction electric motors ; Induction motors ; Inference ; Inspection ; interval-valued triangular fuzzy numbers ; Methods ; Neural networks ; Spiking ; Wavelet transforms</subject><ispartof>Entropy (Basel, Switzerland), 2022-09, Vol.24 (10), p.1385</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63</citedby><cites>FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63</cites><orcidid>0000-0001-8034-0977 ; 0000-0003-4976-9227 ; 0000-0001-8503-9761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728462486/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728462486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37420405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xiu</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Sun, Minghe</creatorcontrib><creatorcontrib>Dong, Jianping</creatorcontrib><creatorcontrib>Zhang, Gexiang</creatorcontrib><title>Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy production rules for motor faults and perform fuzzy reasoning. To perform the inference process, a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The relative preference relationship was used to estimate the severity of various faults, so as to warn and repair the motors in time when minor faults occur. The results of the case studies showed that the FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults and has certain advantages over other existing methods.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Boolean</subject><subject>Fault diagnosis</subject><subject>Fault location (Engineering)</subject><subject>Faults</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>fuzzy reasoning numerical spiking neural P systems</subject><subject>Fuzzy systems</subject><subject>Induction electric motors</subject><subject>Induction motors</subject><subject>Inference</subject><subject>Inspection</subject><subject>interval-valued triangular fuzzy numbers</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Spiking</subject><subject>Wavelet transforms</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUstuFDEQHCEQCYEDP4BG4kIOG9qveVyQopCFlcJDBLhavZ724mXG3tgzSJuvx8mGVYJ8sKtcXXa1uiheMjgRooW3xCUDJhr1qDhk0LYzKQAe3zsfFM9SWgNwwVn1tDgQteQgQR0WP-fT9fW2_EaYgnd-VX6eBorOYF9ebtzvW4ammOHX8nKbRhpSaUMsF76bzOiCLz-FMeM5Tv1Yvne48iG59Lx4YrFP9OJuPyp-zM-_n32cXXz5sDg7vZgZKZpx1gjOpamNMEoxAo41tEhCMSTMGFiF3EJnkNWCmwpl3QKnHBYNqWpZiaNisfPtAq71JroB41YHdPqWCHGlMY7O9KS7jgQiY0sAkggdso46YYXtDFnbQvZ6t_PaTMuBMuvHnPuB6cMb737pVfij2wqYamU2eHNnEMPVRGnUg0uG-h49hSlp3gjF60a2dZa-_k-6DlP0uVWa17yRFZfNTbqTnWqFOYDzNuR3TV4dDc4ET9Zl_rSWKveNtyoXHO8KTAwpRbL73zPQN6Oi96OSta_ux90r_82G-AuXJrj5</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Yin, Xiu</creator><creator>Liu, Xiyu</creator><creator>Sun, Minghe</creator><creator>Dong, Jianping</creator><creator>Zhang, Gexiang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8034-0977</orcidid><orcidid>https://orcid.org/0000-0003-4976-9227</orcidid><orcidid>https://orcid.org/0000-0001-8503-9761</orcidid></search><sort><creationdate>20220928</creationdate><title>Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis</title><author>Yin, Xiu ; Liu, Xiyu ; Sun, Minghe ; Dong, Jianping ; Zhang, Gexiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Boolean</topic><topic>Fault diagnosis</topic><topic>Fault location (Engineering)</topic><topic>Faults</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>fuzzy reasoning numerical spiking neural P systems</topic><topic>Fuzzy systems</topic><topic>Induction electric motors</topic><topic>Induction motors</topic><topic>Inference</topic><topic>Inspection</topic><topic>interval-valued triangular fuzzy numbers</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Spiking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xiu</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Sun, Minghe</creatorcontrib><creatorcontrib>Dong, Jianping</creatorcontrib><creatorcontrib>Zhang, Gexiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xiu</au><au>Liu, Xiyu</au><au>Sun, Minghe</au><au>Dong, Jianping</au><au>Zhang, Gexiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-09-28</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><spage>1385</spage><pages>1385-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy production rules for motor faults and perform fuzzy reasoning. To perform the inference process, a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The relative preference relationship was used to estimate the severity of various faults, so as to warn and repair the motors in time when minor faults occur. The results of the case studies showed that the FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults and has certain advantages over other existing methods.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37420405</pmid><doi>10.3390/e24101385</doi><orcidid>https://orcid.org/0000-0001-8034-0977</orcidid><orcidid>https://orcid.org/0000-0003-4976-9227</orcidid><orcidid>https://orcid.org/0000-0001-8503-9761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-09, Vol.24 (10), p.1385
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dde3aa11b00e4a0da1ded3f3fdceff90
source Open Access: PubMed Central; Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Algorithms
Analysis
Artificial neural networks
Boolean
Fault diagnosis
Fault location (Engineering)
Faults
Fuzzy algorithms
Fuzzy logic
fuzzy reasoning numerical spiking neural P systems
Fuzzy systems
Induction electric motors
Induction motors
Inference
Inspection
interval-valued triangular fuzzy numbers
Methods
Neural networks
Spiking
Wavelet transforms
title Fuzzy Reasoning Numerical Spiking Neural P Systems for Induction Motor Fault Diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Reasoning%20Numerical%20Spiking%20Neural%20P%20Systems%20for%20Induction%20Motor%20Fault%20Diagnosis&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Yin,%20Xiu&rft.date=2022-09-28&rft.volume=24&rft.issue=10&rft.spage=1385&rft.pages=1385-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24101385&rft_dat=%3Cgale_doaj_%3EA745709295%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-83224c7c3c551e02a709ae351aea1e0016a2f0dca1732c6a47902e410ace56b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728462486&rft_id=info:pmid/37420405&rft_galeid=A745709295&rfr_iscdi=true