Loading…

Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements

Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our underst...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-10, Vol.18 (20), p.14851-14866
Main Authors: Umezawa, Taku, Matsueda, Hidekazu, Sawa, Yousuke, Niwa, Yosuke, Machida, Toshinobu, Zhou, Lingxi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14866
container_issue 20
container_start_page 14851
container_title Atmospheric chemistry and physics
container_volume 18
creator Umezawa, Taku
Matsueda, Hidekazu
Sawa, Yousuke
Niwa, Yosuke
Machida, Toshinobu
Zhou, Lingxi
description Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our understanding of atmospheric CO2 variations in the region (and thereby that of the regional carbon budget) is still limited. In this study, we present climatological CO2 distributions over the Asia-Pacific region obtained from the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) measurements. The high-frequency in-flight CO2 measurements over 10 years reveal a clear seasonal variation in CO2 in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO2 mole fraction in the UT north of 40∘ N is low and highly variable in June–August due to the arrival of air parcels with seasonally low CO2 caused by the summertime biospheric uptake in boreal Eurasia. For August–September in particular, the UT CO2 is noticeably low within the Asian summer monsoon anticyclone associated with the convective transport of strong biospheric CO2 uptake signal over South Asia. During September as the anticyclone decays, a spreading of this low-CO2 area in the UT is observed in the vertical profiles of CO2 over the Pacific Rim of continental East Asia. Simulation results identify the influence of anthropogenic and biospheric CO2 fluxes in the seasonal evolution of the spatial CO2 distribution over the Asia-Pacific region. It is inferred that a substantial contribution to the UT CO2 over the northwestern Pacific comes from continental East Asian emissions in spring; but in the summer monsoon season, the prominent air mass origin switches to South Asia and/or Southeast Asia with a distinct imprint of the biospheric CO2 uptake. The CONTRAIL CO2 data provide useful constraints to model estimates of surface fluxes and to the evaluation of the satellite observations, in particular for the Asia-Pacific region.
doi_str_mv 10.5194/acp-18-14851-2018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ddfa36deca114062900619f8153beb65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ddfa36deca114062900619f8153beb65</doaj_id><sourcerecordid>2120922870</sourcerecordid><originalsourceid>FETCH-LOGICAL-d249t-999eaae47b8272eb5987ffa000297db7a8e72f40cebc59809a8092570a36de373</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhsPYYN3HD9jNsHM22_mwfSxhH4Wyjq07B8VRWpckzuyk0Mt--0w7dhASeqXnRYqiO0YfMqbSR9BDzGTMUpmxmFMmz6IZyyWNRcLT8_-a5ZfRlfc7SnlGWTqLfj4RvO2hJbiHdoLR2J7YhozODtYPW3RGk2LFid2jI-MWydwbiN9BmyYoDjfHhcqj22NNqsNxpli9rT_miyXRtuvQaRP4YFxr-gDpguPksMN-9DfRRQOtx9u_fB19PT-ti9d4uXpZFPNlXPNUjbFSCgEwFZXkgmOVKSmaBmg4Q4m6EiBR8CalGisdNKogBM8EhSSvMRHJdbQ4cWsLu3JwpgN3KC2Y8tiwblOCG41usazr5rilgbGU5lxRmjPVSJYlFVZ5Flj3J9bg7PeEfix3dnLhhb7kjAdfLgVNfgHLsHrQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120922870</pqid></control><display><type>article</type><title>Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>Umezawa, Taku ; Matsueda, Hidekazu ; Sawa, Yousuke ; Niwa, Yosuke ; Machida, Toshinobu ; Zhou, Lingxi</creator><creatorcontrib>Umezawa, Taku ; Matsueda, Hidekazu ; Sawa, Yousuke ; Niwa, Yosuke ; Machida, Toshinobu ; Zhou, Lingxi</creatorcontrib><description>Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our understanding of atmospheric CO2 variations in the region (and thereby that of the regional carbon budget) is still limited. In this study, we present climatological CO2 distributions over the Asia-Pacific region obtained from the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) measurements. The high-frequency in-flight CO2 measurements over 10 years reveal a clear seasonal variation in CO2 in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO2 mole fraction in the UT north of 40∘ N is low and highly variable in June–August due to the arrival of air parcels with seasonally low CO2 caused by the summertime biospheric uptake in boreal Eurasia. For August–September in particular, the UT CO2 is noticeably low within the Asian summer monsoon anticyclone associated with the convective transport of strong biospheric CO2 uptake signal over South Asia. During September as the anticyclone decays, a spreading of this low-CO2 area in the UT is observed in the vertical profiles of CO2 over the Pacific Rim of continental East Asia. Simulation results identify the influence of anthropogenic and biospheric CO2 fluxes in the seasonal evolution of the spatial CO2 distribution over the Asia-Pacific region. It is inferred that a substantial contribution to the UT CO2 over the northwestern Pacific comes from continental East Asian emissions in spring; but in the summer monsoon season, the prominent air mass origin switches to South Asia and/or Southeast Asia with a distinct imprint of the biospheric CO2 uptake. The CONTRAIL CO2 data provide useful constraints to model estimates of surface fluxes and to the evaluation of the satellite observations, in particular for the Asia-Pacific region.</description><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-14851-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Air masses ; Air parcels ; Anthropogenic factors ; Anticyclones ; Atmospheric models ; Atmospheric transport ; Atmospheric transport models ; Carbon budget ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon dioxide flux ; Carbon dioxide measurements ; Carbon dioxide variations ; Carbon monoxide ; Climatology ; Computer simulation ; Constraint modelling ; Contrails ; Convective transport ; Decay ; Evaluation ; Evolution ; Fluxes ; Gases ; Human influences ; Monsoons ; Profiles ; Satellite observation ; Satellites ; Seasonal variation ; Seasonal variations ; Seasons ; Spatial distribution ; Summer ; Summer monsoon ; Surface fluxes ; Switches ; Trace gases ; Transport ; Troposphere ; Upper troposphere ; Uptake ; Vertical profiles ; Wind</subject><ispartof>Atmospheric chemistry and physics, 2018-10, Vol.18 (20), p.14851-14866</ispartof><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2120922870/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2120922870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Umezawa, Taku</creatorcontrib><creatorcontrib>Matsueda, Hidekazu</creatorcontrib><creatorcontrib>Sawa, Yousuke</creatorcontrib><creatorcontrib>Niwa, Yosuke</creatorcontrib><creatorcontrib>Machida, Toshinobu</creatorcontrib><creatorcontrib>Zhou, Lingxi</creatorcontrib><title>Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements</title><title>Atmospheric chemistry and physics</title><description>Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our understanding of atmospheric CO2 variations in the region (and thereby that of the regional carbon budget) is still limited. In this study, we present climatological CO2 distributions over the Asia-Pacific region obtained from the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) measurements. The high-frequency in-flight CO2 measurements over 10 years reveal a clear seasonal variation in CO2 in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO2 mole fraction in the UT north of 40∘ N is low and highly variable in June–August due to the arrival of air parcels with seasonally low CO2 caused by the summertime biospheric uptake in boreal Eurasia. For August–September in particular, the UT CO2 is noticeably low within the Asian summer monsoon anticyclone associated with the convective transport of strong biospheric CO2 uptake signal over South Asia. During September as the anticyclone decays, a spreading of this low-CO2 area in the UT is observed in the vertical profiles of CO2 over the Pacific Rim of continental East Asia. Simulation results identify the influence of anthropogenic and biospheric CO2 fluxes in the seasonal evolution of the spatial CO2 distribution over the Asia-Pacific region. It is inferred that a substantial contribution to the UT CO2 over the northwestern Pacific comes from continental East Asian emissions in spring; but in the summer monsoon season, the prominent air mass origin switches to South Asia and/or Southeast Asia with a distinct imprint of the biospheric CO2 uptake. The CONTRAIL CO2 data provide useful constraints to model estimates of surface fluxes and to the evaluation of the satellite observations, in particular for the Asia-Pacific region.</description><subject>Air masses</subject><subject>Air parcels</subject><subject>Anthropogenic factors</subject><subject>Anticyclones</subject><subject>Atmospheric models</subject><subject>Atmospheric transport</subject><subject>Atmospheric transport models</subject><subject>Carbon budget</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon dioxide flux</subject><subject>Carbon dioxide measurements</subject><subject>Carbon dioxide variations</subject><subject>Carbon monoxide</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Contrails</subject><subject>Convective transport</subject><subject>Decay</subject><subject>Evaluation</subject><subject>Evolution</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Human influences</subject><subject>Monsoons</subject><subject>Profiles</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Spatial distribution</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Surface fluxes</subject><subject>Switches</subject><subject>Trace gases</subject><subject>Transport</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Uptake</subject><subject>Vertical profiles</subject><subject>Wind</subject><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1rwzAMhsPYYN3HD9jNsHM22_mwfSxhH4Wyjq07B8VRWpckzuyk0Mt--0w7dhASeqXnRYqiO0YfMqbSR9BDzGTMUpmxmFMmz6IZyyWNRcLT8_-a5ZfRlfc7SnlGWTqLfj4RvO2hJbiHdoLR2J7YhozODtYPW3RGk2LFid2jI-MWydwbiN9BmyYoDjfHhcqj22NNqsNxpli9rT_miyXRtuvQaRP4YFxr-gDpguPksMN-9DfRRQOtx9u_fB19PT-ti9d4uXpZFPNlXPNUjbFSCgEwFZXkgmOVKSmaBmg4Q4m6EiBR8CalGisdNKogBM8EhSSvMRHJdbQ4cWsLu3JwpgN3KC2Y8tiwblOCG41usazr5rilgbGU5lxRmjPVSJYlFVZ5Flj3J9bg7PeEfix3dnLhhb7kjAdfLgVNfgHLsHrQ</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Umezawa, Taku</creator><creator>Matsueda, Hidekazu</creator><creator>Sawa, Yousuke</creator><creator>Niwa, Yosuke</creator><creator>Machida, Toshinobu</creator><creator>Zhou, Lingxi</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20181017</creationdate><title>Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements</title><author>Umezawa, Taku ; Matsueda, Hidekazu ; Sawa, Yousuke ; Niwa, Yosuke ; Machida, Toshinobu ; Zhou, Lingxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d249t-999eaae47b8272eb5987ffa000297db7a8e72f40cebc59809a8092570a36de373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air masses</topic><topic>Air parcels</topic><topic>Anthropogenic factors</topic><topic>Anticyclones</topic><topic>Atmospheric models</topic><topic>Atmospheric transport</topic><topic>Atmospheric transport models</topic><topic>Carbon budget</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon dioxide flux</topic><topic>Carbon dioxide measurements</topic><topic>Carbon dioxide variations</topic><topic>Carbon monoxide</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Contrails</topic><topic>Convective transport</topic><topic>Decay</topic><topic>Evaluation</topic><topic>Evolution</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Human influences</topic><topic>Monsoons</topic><topic>Profiles</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Spatial distribution</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Surface fluxes</topic><topic>Switches</topic><topic>Trace gases</topic><topic>Transport</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Uptake</topic><topic>Vertical profiles</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umezawa, Taku</creatorcontrib><creatorcontrib>Matsueda, Hidekazu</creatorcontrib><creatorcontrib>Sawa, Yousuke</creatorcontrib><creatorcontrib>Niwa, Yosuke</creatorcontrib><creatorcontrib>Machida, Toshinobu</creatorcontrib><creatorcontrib>Zhou, Lingxi</creatorcontrib><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umezawa, Taku</au><au>Matsueda, Hidekazu</au><au>Sawa, Yousuke</au><au>Niwa, Yosuke</au><au>Machida, Toshinobu</au><au>Zhou, Lingxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-10-17</date><risdate>2018</risdate><volume>18</volume><issue>20</issue><spage>14851</spage><epage>14866</epage><pages>14851-14866</pages><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our understanding of atmospheric CO2 variations in the region (and thereby that of the regional carbon budget) is still limited. In this study, we present climatological CO2 distributions over the Asia-Pacific region obtained from the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) measurements. The high-frequency in-flight CO2 measurements over 10 years reveal a clear seasonal variation in CO2 in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO2 mole fraction in the UT north of 40∘ N is low and highly variable in June–August due to the arrival of air parcels with seasonally low CO2 caused by the summertime biospheric uptake in boreal Eurasia. For August–September in particular, the UT CO2 is noticeably low within the Asian summer monsoon anticyclone associated with the convective transport of strong biospheric CO2 uptake signal over South Asia. During September as the anticyclone decays, a spreading of this low-CO2 area in the UT is observed in the vertical profiles of CO2 over the Pacific Rim of continental East Asia. Simulation results identify the influence of anthropogenic and biospheric CO2 fluxes in the seasonal evolution of the spatial CO2 distribution over the Asia-Pacific region. It is inferred that a substantial contribution to the UT CO2 over the northwestern Pacific comes from continental East Asian emissions in spring; but in the summer monsoon season, the prominent air mass origin switches to South Asia and/or Southeast Asia with a distinct imprint of the biospheric CO2 uptake. The CONTRAIL CO2 data provide useful constraints to model estimates of surface fluxes and to the evaluation of the satellite observations, in particular for the Asia-Pacific region.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-14851-2018</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7316
ispartof Atmospheric chemistry and physics, 2018-10, Vol.18 (20), p.14851-14866
issn 1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ddfa36deca114062900619f8153beb65
source DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection
subjects Air masses
Air parcels
Anthropogenic factors
Anticyclones
Atmospheric models
Atmospheric transport
Atmospheric transport models
Carbon budget
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon dioxide flux
Carbon dioxide measurements
Carbon dioxide variations
Carbon monoxide
Climatology
Computer simulation
Constraint modelling
Contrails
Convective transport
Decay
Evaluation
Evolution
Fluxes
Gases
Human influences
Monsoons
Profiles
Satellite observation
Satellites
Seasonal variation
Seasonal variations
Seasons
Spatial distribution
Summer
Summer monsoon
Surface fluxes
Switches
Trace gases
Transport
Troposphere
Upper troposphere
Uptake
Vertical profiles
Wind
title Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20evaluation%20of%20tropospheric%20CO2%20over%20the%20Asia-Pacific%20region%20observed%20by%20the%20CONTRAIL%20commercial%20airliner%20measurements&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Umezawa,%20Taku&rft.date=2018-10-17&rft.volume=18&rft.issue=20&rft.spage=14851&rft.epage=14866&rft.pages=14851-14866&rft.issn=1680-7316&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-14851-2018&rft_dat=%3Cproquest_doaj_%3E2120922870%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d249t-999eaae47b8272eb5987ffa000297db7a8e72f40cebc59809a8092570a36de373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120922870&rft_id=info:pmid/&rfr_iscdi=true