Loading…

Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity

The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira ge...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2012-09, Vol.13 (1), p.454-454
Main Authors: Mappley, Luke J, Black, Michael L, AbuOun, Manal, Darby, Alistair C, Woodward, Martin J, Parkhill, Julian, Turner, A Keith, Bellgard, Matthew I, La, Tom, Phillips, Nyree D, La Ragione, Roberto M, Hampson, David J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3
cites cdi_FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3
container_end_page 454
container_issue 1
container_start_page 454
container_title BMC genomics
container_volume 13
creator Mappley, Luke J
Black, Michael L
AbuOun, Manal
Darby, Alistair C
Woodward, Martin J
Parkhill, Julian
Turner, A Keith
Bellgard, Matthew I
La, Tom
Phillips, Nyree D
La Ragione, Roberto M
Hampson, David J
description The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
doi_str_mv 10.1186/1471-2164-13-454
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de0bf33d3a7f46448d2294f313b1a6f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534116114</galeid><doaj_id>oai_doaj_org_article_de0bf33d3a7f46448d2294f313b1a6f3</doaj_id><sourcerecordid>A534116114</sourcerecordid><originalsourceid>FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3</originalsourceid><addsrcrecordid>eNqNU12L1DAULaK46-i7T1LwRcGuuUnbtD4I6-DHwILgx3NI05tOhrbpJu3q_BT_ramzjltZQfLQ5N5zDqfnJlH0GMgZQJG_hJRDQiFPE2BJmqV3otNj6e6N_Un0wPsdIcALmt2PTigtQ4tnp9GPte0G6eRorjBusLedUT62On7jpNru_WCcjAfTWm-UbU3sRydN718dsBg7lM7JvsEO-9G_COd6UqOxvY9lX8fKOoetnAuzaCDhaFQod0NrZkr8zYzbeNgGtXE_hFYdjDhvxv3D6J6WrcdH199V9PXd2y_rD8nFx_eb9flFUuVFOiapIqiBSM0IlrnWdYmc8jIDVVW5ykipSFVooMiRAs2qGqpaUlIipFXGS8VW0eagW1u5E4MznXR7YaURvwrWNUK6YLpFUSOpNGM1k1yneZoW9RykZsAqkHnorKLXB61hqjqsVfhBJ9uF6LLTm61o7JVgGaOQzgLrg0Bl7D8Elp2QpJjHLOYxC2Ai3IKg8uzahrOXE_pRdMYrbFvZo528AMoZAOeU_Q-UclIWeR6gT_-C7uzk-jCbgMpJlmVFSf-gGhkSM722waeaRcV5xlKAHGB2eHYLKqwawwW0PWoT6gvC8wUhYEb8PjZy8l5sPn9aYskBq5z13qE-5gdEzO_mtsSe3BzckfD7obCf1a4VSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1260555892</pqid></control><display><type>article</type><title>Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Mappley, Luke J ; Black, Michael L ; AbuOun, Manal ; Darby, Alistair C ; Woodward, Martin J ; Parkhill, Julian ; Turner, A Keith ; Bellgard, Matthew I ; La, Tom ; Phillips, Nyree D ; La Ragione, Roberto M ; Hampson, David J</creator><creatorcontrib>Mappley, Luke J ; Black, Michael L ; AbuOun, Manal ; Darby, Alistair C ; Woodward, Martin J ; Parkhill, Julian ; Turner, A Keith ; Bellgard, Matthew I ; La, Tom ; Phillips, Nyree D ; La Ragione, Roberto M ; Hampson, David J</creatorcontrib><description>The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-13-454</identifier><identifier>PMID: 22947175</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino Acid Oxidoreductases - genetics ; Animals ; Bacterial Proteins - genetics ; Bacteriophages - genetics ; Birds - microbiology ; Brachyspira ; Brachyspira - genetics ; Brachyspira pilosicoli ; Colitis ; Comparative analysis ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Gene Rearrangement ; Gene transfer ; Genes ; Genetic aspects ; Genetic Association Studies ; Genetic Variation ; Genome comparison ; Genome Size ; Genome, Bacterial ; Genomes ; Genomics ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Glycine ; glycine reductase ; Hogs ; Horizontal gene transfer ; Host Specificity ; Humans - microbiology ; Interspersed Repetitive Sequences ; Microbiology ; Molecular weight ; Multienzyme Complexes - genetics ; Nucleotide sequence ; Nucleotide sequencing ; peptidase ; Peptide Hydrolases - genetics ; Phages ; Phenotype ; Phenotype MicroArray ; Phenotyping ; Physiological aspects ; Spirochaete ; Spirochetes ; Swine - microbiology ; Transfer RNA ; transposase ; Transposases - genetics ; Transposons ; Whole genome sequencing ; Zoonosis</subject><ispartof>BMC genomics, 2012-09, Vol.13 (1), p.454-454</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><rights>2012 Mappley et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2012 Mappley et al.; licensee BioMed Central Ltd. 2012 Mappley et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3</citedby><cites>FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532143/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1260555892?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22947175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mappley, Luke J</creatorcontrib><creatorcontrib>Black, Michael L</creatorcontrib><creatorcontrib>AbuOun, Manal</creatorcontrib><creatorcontrib>Darby, Alistair C</creatorcontrib><creatorcontrib>Woodward, Martin J</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Turner, A Keith</creatorcontrib><creatorcontrib>Bellgard, Matthew I</creatorcontrib><creatorcontrib>La, Tom</creatorcontrib><creatorcontrib>Phillips, Nyree D</creatorcontrib><creatorcontrib>La Ragione, Roberto M</creatorcontrib><creatorcontrib>Hampson, David J</creatorcontrib><title>Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.</description><subject>Amino Acid Oxidoreductases - genetics</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacteriophages - genetics</subject><subject>Birds - microbiology</subject><subject>Brachyspira</subject><subject>Brachyspira - genetics</subject><subject>Brachyspira pilosicoli</subject><subject>Colitis</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Gene Rearrangement</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetic Variation</subject><subject>Genome comparison</subject><subject>Genome Size</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine</subject><subject>glycine reductase</subject><subject>Hogs</subject><subject>Horizontal gene transfer</subject><subject>Host Specificity</subject><subject>Humans - microbiology</subject><subject>Interspersed Repetitive Sequences</subject><subject>Microbiology</subject><subject>Molecular weight</subject><subject>Multienzyme Complexes - genetics</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>peptidase</subject><subject>Peptide Hydrolases - genetics</subject><subject>Phages</subject><subject>Phenotype</subject><subject>Phenotype MicroArray</subject><subject>Phenotyping</subject><subject>Physiological aspects</subject><subject>Spirochaete</subject><subject>Spirochetes</subject><subject>Swine - microbiology</subject><subject>Transfer RNA</subject><subject>transposase</subject><subject>Transposases - genetics</subject><subject>Transposons</subject><subject>Whole genome sequencing</subject><subject>Zoonosis</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNU12L1DAULaK46-i7T1LwRcGuuUnbtD4I6-DHwILgx3NI05tOhrbpJu3q_BT_ramzjltZQfLQ5N5zDqfnJlH0GMgZQJG_hJRDQiFPE2BJmqV3otNj6e6N_Un0wPsdIcALmt2PTigtQ4tnp9GPte0G6eRorjBusLedUT62On7jpNru_WCcjAfTWm-UbU3sRydN718dsBg7lM7JvsEO-9G_COd6UqOxvY9lX8fKOoetnAuzaCDhaFQod0NrZkr8zYzbeNgGtXE_hFYdjDhvxv3D6J6WrcdH199V9PXd2y_rD8nFx_eb9flFUuVFOiapIqiBSM0IlrnWdYmc8jIDVVW5ykipSFVooMiRAs2qGqpaUlIipFXGS8VW0eagW1u5E4MznXR7YaURvwrWNUK6YLpFUSOpNGM1k1yneZoW9RykZsAqkHnorKLXB61hqjqsVfhBJ9uF6LLTm61o7JVgGaOQzgLrg0Bl7D8Elp2QpJjHLOYxC2Ai3IKg8uzahrOXE_pRdMYrbFvZo528AMoZAOeU_Q-UclIWeR6gT_-C7uzk-jCbgMpJlmVFSf-gGhkSM722waeaRcV5xlKAHGB2eHYLKqwawwW0PWoT6gvC8wUhYEb8PjZy8l5sPn9aYskBq5z13qE-5gdEzO_mtsSe3BzckfD7obCf1a4VSA</recordid><startdate>20120905</startdate><enddate>20120905</enddate><creator>Mappley, Luke J</creator><creator>Black, Michael L</creator><creator>AbuOun, Manal</creator><creator>Darby, Alistair C</creator><creator>Woodward, Martin J</creator><creator>Parkhill, Julian</creator><creator>Turner, A Keith</creator><creator>Bellgard, Matthew I</creator><creator>La, Tom</creator><creator>Phillips, Nyree D</creator><creator>La Ragione, Roberto M</creator><creator>Hampson, David J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7QL</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120905</creationdate><title>Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity</title><author>Mappley, Luke J ; Black, Michael L ; AbuOun, Manal ; Darby, Alistair C ; Woodward, Martin J ; Parkhill, Julian ; Turner, A Keith ; Bellgard, Matthew I ; La, Tom ; Phillips, Nyree D ; La Ragione, Roberto M ; Hampson, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Oxidoreductases - genetics</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacteriophages - genetics</topic><topic>Birds - microbiology</topic><topic>Brachyspira</topic><topic>Brachyspira - genetics</topic><topic>Brachyspira pilosicoli</topic><topic>Colitis</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Gene Rearrangement</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetic Variation</topic><topic>Genome comparison</topic><topic>Genome Size</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine</topic><topic>glycine reductase</topic><topic>Hogs</topic><topic>Horizontal gene transfer</topic><topic>Host Specificity</topic><topic>Humans - microbiology</topic><topic>Interspersed Repetitive Sequences</topic><topic>Microbiology</topic><topic>Molecular weight</topic><topic>Multienzyme Complexes - genetics</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>peptidase</topic><topic>Peptide Hydrolases - genetics</topic><topic>Phages</topic><topic>Phenotype</topic><topic>Phenotype MicroArray</topic><topic>Phenotyping</topic><topic>Physiological aspects</topic><topic>Spirochaete</topic><topic>Spirochetes</topic><topic>Swine - microbiology</topic><topic>Transfer RNA</topic><topic>transposase</topic><topic>Transposases - genetics</topic><topic>Transposons</topic><topic>Whole genome sequencing</topic><topic>Zoonosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mappley, Luke J</creatorcontrib><creatorcontrib>Black, Michael L</creatorcontrib><creatorcontrib>AbuOun, Manal</creatorcontrib><creatorcontrib>Darby, Alistair C</creatorcontrib><creatorcontrib>Woodward, Martin J</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Turner, A Keith</creatorcontrib><creatorcontrib>Bellgard, Matthew I</creatorcontrib><creatorcontrib>La, Tom</creatorcontrib><creatorcontrib>Phillips, Nyree D</creatorcontrib><creatorcontrib>La Ragione, Roberto M</creatorcontrib><creatorcontrib>Hampson, David J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mappley, Luke J</au><au>Black, Michael L</au><au>AbuOun, Manal</au><au>Darby, Alistair C</au><au>Woodward, Martin J</au><au>Parkhill, Julian</au><au>Turner, A Keith</au><au>Bellgard, Matthew I</au><au>La, Tom</au><au>Phillips, Nyree D</au><au>La Ragione, Roberto M</au><au>Hampson, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2012-09-05</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>454</spage><epage>454</epage><pages>454-454</pages><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>22947175</pmid><doi>10.1186/1471-2164-13-454</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2012-09, Vol.13 (1), p.454-454
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_de0bf33d3a7f46448d2294f313b1a6f3
source Open Access: PubMed Central; Publicly Available Content Database
subjects Amino Acid Oxidoreductases - genetics
Animals
Bacterial Proteins - genetics
Bacteriophages - genetics
Birds - microbiology
Brachyspira
Brachyspira - genetics
Brachyspira pilosicoli
Colitis
Comparative analysis
Deoxyribonucleic acid
DNA
DNA sequencing
Gene Rearrangement
Gene transfer
Genes
Genetic aspects
Genetic Association Studies
Genetic Variation
Genome comparison
Genome Size
Genome, Bacterial
Genomes
Genomics
Genotype
Genotype & phenotype
Genotypes
Glycine
glycine reductase
Hogs
Horizontal gene transfer
Host Specificity
Humans - microbiology
Interspersed Repetitive Sequences
Microbiology
Molecular weight
Multienzyme Complexes - genetics
Nucleotide sequence
Nucleotide sequencing
peptidase
Peptide Hydrolases - genetics
Phages
Phenotype
Phenotype MicroArray
Phenotyping
Physiological aspects
Spirochaete
Spirochetes
Swine - microbiology
Transfer RNA
transposase
Transposases - genetics
Transposons
Whole genome sequencing
Zoonosis
title Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20Brachyspira%20pilosicoli%20strains:%20genome%20rearrangements,%20reductions%20and%20correlation%20of%20genetic%20compliment%20with%20phenotypic%20diversity&rft.jtitle=BMC%20genomics&rft.au=Mappley,%20Luke%20J&rft.date=2012-09-05&rft.volume=13&rft.issue=1&rft.spage=454&rft.epage=454&rft.pages=454-454&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-13-454&rft_dat=%3Cgale_doaj_%3EA534116114%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b684t-4c0ef10af30e96ffd9e727951cbb6c509c0b8f12e7e2125bd1bda209e14b579c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1260555892&rft_id=info:pmid/22947175&rft_galeid=A534116114&rfr_iscdi=true