Loading…
Shaping the subway microbiome through probiotic-based sanitation during the COVID-19 emergency: a pre-post case-control study
The COVID-19 pandemic has highlighted the extent to which the public transportation environment, such as in subways, may be important for the transmission of potential pathogenic microbes among humans, with the possibility of rapidly impacting large numbers of people. For these reasons, sanitation p...
Saved in:
Published in: | Microbiome 2023-03, Vol.11 (1), p.64-64, Article 64 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The COVID-19 pandemic has highlighted the extent to which the public transportation environment, such as in subways, may be important for the transmission of potential pathogenic microbes among humans, with the possibility of rapidly impacting large numbers of people. For these reasons, sanitation procedures, including massive use of chemical disinfection, were mandatorily introduced during the emergency and remain in place. However, most chemical disinfectants have temporary action and a high environmental impact, potentially enhancing antimicrobial resistance (AMR) of the treated microbes. By contrast, a biological and eco-sustainable probiotic-based sanitation (PBS) procedure was recently shown to stably shape the microbiome of treated environments, providing effective and long-term control of pathogens and AMR spread in addition to activity against SARS-CoV-2, the causative agent of COVID-19. Our study aims to assess the applicability and impact of PBS compared with chemical disinfectants based on their effects on the surface microbiome of a subway environment.
The train microbiome was characterized by both culture-based and culture-independent molecular methods, including 16S rRNA NGS and real-time qPCR microarray, for profiling the train bacteriome and its resistome and to identify and quantify specific human pathogens. SARS-CoV-2 presence was also assessed in parallel using digital droplet PCR. The results showed a clear and significant decrease in bacterial and fungal pathogens (p  |
---|---|
ISSN: | 2049-2618 2049-2618 |
DOI: | 10.1186/s40168-023-01512-2 |