Loading…

Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream

To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources,...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2023-12, Vol.2023 (1), p.56-20, Article 56
Main Authors: Wu, Yuxin, Cai, Changjun, Bi, Xuanming, Xia, Junjuan, Gao, Chongzhi, Tang, Yajuan, Lai, Shiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693
cites cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693
container_end_page 20
container_issue 1
container_start_page 56
container_title EURASIP journal on advances in signal processing
container_volume 2023
creator Wu, Yuxin
Cai, Changjun
Bi, Xuanming
Xia, Junjuan
Gao, Chongzhi
Tang, Yajuan
Lai, Shiwei
description To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.
doi_str_mv 10.1186/s13634-023-01018-x
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de33d735b79846bda198faf26cff9196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749584409</galeid><doaj_id>oai_doaj_org_article_de33d735b79846bda198faf26cff9196</doaj_id><sourcerecordid>A749584409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqXwAqwisXbxXxx7WVVAr1SJDaytiT0OviRxsX1FeXt8mwpYoVl4NJrzzbFO171l9Ioxrd4XJpSQhHJBKKNMk4dn3QVTeiSKafr8n_5l96qUI6WD4pRfdNNhq7gsccat9hlLOmWHPSxLclBj2vrivuGKfUi5d0s6eYJ-RoKb70OGFX-m_L2H6NH362mpkTwRPFToS80I6-vuRYCl4Jun97L7-vHDl5tbcvf50-Hm-o44qXQlwEathkkpCUJNho5jGIzwI1fSD2FSZqRGa0eVFM7B4JnnnE-OIjN6dMqIy-6wc32Co73PcYX8yyaI9nGQ8mwh1-gWtB5FI4thGo2WavLQGAECVy4Ew4xqrHc76z6nHycs1R7bv7Zm33LNJGdCs_PFq31rhgaNW0g1g2vlcY0ubRhim1-P0gxaSnoW8F3gciolY_hjk1F7DtLuQdoWpH0M0j40kdhFpS1vM-a_Xv6j-g0B7KD8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814213819</pqid></control><display><type>article</type><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</creator><creatorcontrib>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</creatorcontrib><description>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/s13634-023-01018-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cloud computing ; Collaborative offloading ; Comparative analysis ; Computation offloading ; Computational geometry ; Convex analysis ; Convexity ; Data transmission ; Edge computing ; Engineering ; File servers ; Intelligent Mining for Multi-Source Data Stream ; Internet of Things ; Markov processes ; Multi-source data stream ; Network latency ; Optimization ; Proximal policy optimization ; Quantum Information Technology ; Resource allocation ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2023-12, Vol.2023 (1), p.56-20, Article 56</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</citedby><cites>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</cites><orcidid>0009-0009-4745-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814213819/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814213819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Cai, Changjun</creatorcontrib><creatorcontrib>Bi, Xuanming</creatorcontrib><creatorcontrib>Xia, Junjuan</creatorcontrib><creatorcontrib>Gao, Chongzhi</creatorcontrib><creatorcontrib>Tang, Yajuan</creatorcontrib><creatorcontrib>Lai, Shiwei</creatorcontrib><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</description><subject>Cloud computing</subject><subject>Collaborative offloading</subject><subject>Comparative analysis</subject><subject>Computation offloading</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Data transmission</subject><subject>Edge computing</subject><subject>Engineering</subject><subject>File servers</subject><subject>Intelligent Mining for Multi-Source Data Stream</subject><subject>Internet of Things</subject><subject>Markov processes</subject><subject>Multi-source data stream</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Proximal policy optimization</subject><subject>Quantum Information Technology</subject><subject>Resource allocation</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSMEEqXwAqwisXbxXxx7WVVAr1SJDaytiT0OviRxsX1FeXt8mwpYoVl4NJrzzbFO171l9Ioxrd4XJpSQhHJBKKNMk4dn3QVTeiSKafr8n_5l96qUI6WD4pRfdNNhq7gsccat9hlLOmWHPSxLclBj2vrivuGKfUi5d0s6eYJ-RoKb70OGFX-m_L2H6NH362mpkTwRPFToS80I6-vuRYCl4Jun97L7-vHDl5tbcvf50-Hm-o44qXQlwEathkkpCUJNho5jGIzwI1fSD2FSZqRGa0eVFM7B4JnnnE-OIjN6dMqIy-6wc32Co73PcYX8yyaI9nGQ8mwh1-gWtB5FI4thGo2WavLQGAECVy4Ew4xqrHc76z6nHycs1R7bv7Zm33LNJGdCs_PFq31rhgaNW0g1g2vlcY0ubRhim1-P0gxaSnoW8F3gciolY_hjk1F7DtLuQdoWpH0M0j40kdhFpS1vM-a_Xv6j-g0B7KD8</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wu, Yuxin</creator><creator>Cai, Changjun</creator><creator>Bi, Xuanming</creator><creator>Xia, Junjuan</creator><creator>Gao, Chongzhi</creator><creator>Tang, Yajuan</creator><creator>Lai, Shiwei</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-4745-8717</orcidid></search><sort><creationdate>20231201</creationdate><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><author>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Collaborative offloading</topic><topic>Comparative analysis</topic><topic>Computation offloading</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Data transmission</topic><topic>Edge computing</topic><topic>Engineering</topic><topic>File servers</topic><topic>Intelligent Mining for Multi-Source Data Stream</topic><topic>Internet of Things</topic><topic>Markov processes</topic><topic>Multi-source data stream</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Proximal policy optimization</topic><topic>Quantum Information Technology</topic><topic>Resource allocation</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Cai, Changjun</creatorcontrib><creatorcontrib>Bi, Xuanming</creatorcontrib><creatorcontrib>Xia, Junjuan</creatorcontrib><creatorcontrib>Gao, Chongzhi</creatorcontrib><creatorcontrib>Tang, Yajuan</creatorcontrib><creatorcontrib>Lai, Shiwei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuxin</au><au>Cai, Changjun</au><au>Bi, Xuanming</au><au>Xia, Junjuan</au><au>Gao, Chongzhi</au><au>Tang, Yajuan</au><au>Lai, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><spage>56</spage><epage>20</epage><pages>56-20</pages><artnum>56</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13634-023-01018-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0009-4745-8717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2023-12, Vol.2023 (1), p.56-20, Article 56
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_de33d735b79846bda198faf26cff9196
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Cloud computing
Collaborative offloading
Comparative analysis
Computation offloading
Computational geometry
Convex analysis
Convexity
Data transmission
Edge computing
Engineering
File servers
Intelligent Mining for Multi-Source Data Stream
Internet of Things
Markov processes
Multi-source data stream
Network latency
Optimization
Proximal policy optimization
Quantum Information Technology
Resource allocation
Signal,Image and Speech Processing
Spintronics
title Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20resource%20allocation%20scheme%20for%20cloud-edge-end%20framework%20aided%20multi-source%20data%20stream&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Wu,%20Yuxin&rft.date=2023-12-01&rft.volume=2023&rft.issue=1&rft.spage=56&rft.epage=20&rft.pages=56-20&rft.artnum=56&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/s13634-023-01018-x&rft_dat=%3Cgale_doaj_%3EA749584409%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814213819&rft_id=info:pmid/&rft_galeid=A749584409&rfr_iscdi=true