Loading…
Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream
To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources,...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2023-12, Vol.2023 (1), p.56-20, Article 56 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 56 |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2023 |
creator | Wu, Yuxin Cai, Changjun Bi, Xuanming Xia, Junjuan Gao, Chongzhi Tang, Yajuan Lai, Shiwei |
description | To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream. |
doi_str_mv | 10.1186/s13634-023-01018-x |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_de33d735b79846bda198faf26cff9196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749584409</galeid><doaj_id>oai_doaj_org_article_de33d735b79846bda198faf26cff9196</doaj_id><sourcerecordid>A749584409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqXwAqwisXbxXxx7WVVAr1SJDaytiT0OviRxsX1FeXt8mwpYoVl4NJrzzbFO171l9Ioxrd4XJpSQhHJBKKNMk4dn3QVTeiSKafr8n_5l96qUI6WD4pRfdNNhq7gsccat9hlLOmWHPSxLclBj2vrivuGKfUi5d0s6eYJ-RoKb70OGFX-m_L2H6NH362mpkTwRPFToS80I6-vuRYCl4Jun97L7-vHDl5tbcvf50-Hm-o44qXQlwEathkkpCUJNho5jGIzwI1fSD2FSZqRGa0eVFM7B4JnnnE-OIjN6dMqIy-6wc32Co73PcYX8yyaI9nGQ8mwh1-gWtB5FI4thGo2WavLQGAECVy4Ew4xqrHc76z6nHycs1R7bv7Zm33LNJGdCs_PFq31rhgaNW0g1g2vlcY0ubRhim1-P0gxaSnoW8F3gciolY_hjk1F7DtLuQdoWpH0M0j40kdhFpS1vM-a_Xv6j-g0B7KD8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814213819</pqid></control><display><type>article</type><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</creator><creatorcontrib>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</creatorcontrib><description>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/s13634-023-01018-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cloud computing ; Collaborative offloading ; Comparative analysis ; Computation offloading ; Computational geometry ; Convex analysis ; Convexity ; Data transmission ; Edge computing ; Engineering ; File servers ; Intelligent Mining for Multi-Source Data Stream ; Internet of Things ; Markov processes ; Multi-source data stream ; Network latency ; Optimization ; Proximal policy optimization ; Quantum Information Technology ; Resource allocation ; Signal,Image and Speech Processing ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2023-12, Vol.2023 (1), p.56-20, Article 56</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</citedby><cites>FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</cites><orcidid>0009-0009-4745-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814213819/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814213819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Cai, Changjun</creatorcontrib><creatorcontrib>Bi, Xuanming</creatorcontrib><creatorcontrib>Xia, Junjuan</creatorcontrib><creatorcontrib>Gao, Chongzhi</creatorcontrib><creatorcontrib>Tang, Yajuan</creatorcontrib><creatorcontrib>Lai, Shiwei</creatorcontrib><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</description><subject>Cloud computing</subject><subject>Collaborative offloading</subject><subject>Comparative analysis</subject><subject>Computation offloading</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Data transmission</subject><subject>Edge computing</subject><subject>Engineering</subject><subject>File servers</subject><subject>Intelligent Mining for Multi-Source Data Stream</subject><subject>Internet of Things</subject><subject>Markov processes</subject><subject>Multi-source data stream</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Proximal policy optimization</subject><subject>Quantum Information Technology</subject><subject>Resource allocation</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSMEEqXwAqwisXbxXxx7WVVAr1SJDaytiT0OviRxsX1FeXt8mwpYoVl4NJrzzbFO171l9Ioxrd4XJpSQhHJBKKNMk4dn3QVTeiSKafr8n_5l96qUI6WD4pRfdNNhq7gsccat9hlLOmWHPSxLclBj2vrivuGKfUi5d0s6eYJ-RoKb70OGFX-m_L2H6NH362mpkTwRPFToS80I6-vuRYCl4Jun97L7-vHDl5tbcvf50-Hm-o44qXQlwEathkkpCUJNho5jGIzwI1fSD2FSZqRGa0eVFM7B4JnnnE-OIjN6dMqIy-6wc32Co73PcYX8yyaI9nGQ8mwh1-gWtB5FI4thGo2WavLQGAECVy4Ew4xqrHc76z6nHycs1R7bv7Zm33LNJGdCs_PFq31rhgaNW0g1g2vlcY0ubRhim1-P0gxaSnoW8F3gciolY_hjk1F7DtLuQdoWpH0M0j40kdhFpS1vM-a_Xv6j-g0B7KD8</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wu, Yuxin</creator><creator>Cai, Changjun</creator><creator>Bi, Xuanming</creator><creator>Xia, Junjuan</creator><creator>Gao, Chongzhi</creator><creator>Tang, Yajuan</creator><creator>Lai, Shiwei</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-4745-8717</orcidid></search><sort><creationdate>20231201</creationdate><title>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</title><author>Wu, Yuxin ; Cai, Changjun ; Bi, Xuanming ; Xia, Junjuan ; Gao, Chongzhi ; Tang, Yajuan ; Lai, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Collaborative offloading</topic><topic>Comparative analysis</topic><topic>Computation offloading</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Data transmission</topic><topic>Edge computing</topic><topic>Engineering</topic><topic>File servers</topic><topic>Intelligent Mining for Multi-Source Data Stream</topic><topic>Internet of Things</topic><topic>Markov processes</topic><topic>Multi-source data stream</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Proximal policy optimization</topic><topic>Quantum Information Technology</topic><topic>Resource allocation</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Cai, Changjun</creatorcontrib><creatorcontrib>Bi, Xuanming</creatorcontrib><creatorcontrib>Xia, Junjuan</creatorcontrib><creatorcontrib>Gao, Chongzhi</creatorcontrib><creatorcontrib>Tang, Yajuan</creatorcontrib><creatorcontrib>Lai, Shiwei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuxin</au><au>Cai, Changjun</au><au>Bi, Xuanming</au><au>Xia, Junjuan</au><au>Gao, Chongzhi</au><au>Tang, Yajuan</au><au>Lai, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><spage>56</spage><epage>20</epage><pages>56-20</pages><artnum>56</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13634-023-01018-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0009-4745-8717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2023-12, Vol.2023 (1), p.56-20, Article 56 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_de33d735b79846bda198faf26cff9196 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Cloud computing Collaborative offloading Comparative analysis Computation offloading Computational geometry Convex analysis Convexity Data transmission Edge computing Engineering File servers Intelligent Mining for Multi-Source Data Stream Internet of Things Markov processes Multi-source data stream Network latency Optimization Proximal policy optimization Quantum Information Technology Resource allocation Signal,Image and Speech Processing Spintronics |
title | Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20resource%20allocation%20scheme%20for%20cloud-edge-end%20framework%20aided%20multi-source%20data%20stream&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Wu,%20Yuxin&rft.date=2023-12-01&rft.volume=2023&rft.issue=1&rft.spage=56&rft.epage=20&rft.pages=56-20&rft.artnum=56&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/s13634-023-01018-x&rft_dat=%3Cgale_doaj_%3EA749584409%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-a17865b664a36b9077f593d7264d5fb6970988c0643cca5d1d222bc0e1987c693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814213819&rft_id=info:pmid/&rft_galeid=A749584409&rfr_iscdi=true |